
A Formal Model For Architecture-Independent

Parallel Software Engineering

David C. DiNucci
B.S., Portland State University, 1983

A dissertation submitted to the faculty
of the Oregon Graduate Institute

in partial fulfillment of the
requirements for the degree

Doctor of Philosophy
in

Computer Science and Engineering

March, 1990

2

1

CHAPTER 1

Algorithms for Parallel Architectures

1.1. Introduction

What is a parallel algorithm? Decades after the advent of parallel processors, this is still not a

simple question to answer, or even understand. The question is usually not put so bluntly, or is accom-

panied by information about the intended target architecture: whether the target is shared-memory or

message-passing or SIMD, the number of processors that it contains, specifics about the interconnec-

tion topology or memory hierarchy, and the cost of communication.

Yet, algorithms have traditionally been considered as being independent of architecture. The

same algorithm can be considered as instructions to a human solving a problem on a scratch pad or

black board, a Turing Machine accessing a tape and performing state transitions, or a uniprocessor

accessing memory and executing instructions. The fact that a computation for all of these devices has

the same form—a sequence—unifies the concept of algorithm and provides for them to be written and

analyzed (to some extent) without knowing their target.

The goal of this work is to define a model of computation which can be efficiently implemented

on different MIMD architectures, and one which provides a natural setting in which to describe parallel

algorithms. In order to capture the generality of the word "algorithm", the programs expressed within

this model should serve equally well as instructions to a room full of humans, a set of Turing

Machines, or a parallel processor. The remainder of this chapter will further define the goals of this

model by first describing the similarities and differences between MIMD architectures, then the

requirements of a parallel algorithm and the factors which might make one representation better than

another, and finally the role that sequential languages might play in a parallel setting.

2

1.2. MIMD Parallel Architectures

In this section, we provide a very simple formalism by which parallel architectures can be com-

pared and contrasted. The terminology used is by no means standard: each term is defined as it is

used. We then describe the differences in various architectures in terms of architectural implementa-

tion, physical characteristics, semantics, and number of processors.

1.2.1. Formalism

An MIMD parallel architecture consists of some number ofsequential processorsand a commu-

nication medium, calledether. Each sequential processor has the use of a computational unit capable

of executing one instruction at a time, and each instruction terminates in finite time. Each processor

possesses some amount of local state (e.g. registers and local memory) which is inaccessible by other

processors and which can affect the behavior of instructions executing on it. Processors do not neces-

sarily perform instructions at the same rate, nor do they hav e access to synchronized clocks. Each pro-

cessor will be live—i.e. it will be ready to execute another instruction within a finite time after the last

has completed.

Processors share access to the ether. In addition to the standard instructions performed by

sequential processors, which only affect and are affected by the local state of the processor, each pro-

cessor is capable of posting (performing)events. An event consists of a type, an address1, and an

optional data item. Event types are divided into primary-secondary pairs. Common event type pairs

for current architectures are(write, read) , (send, receive) , and(unlock, lock) .

When a processor posts a primary event, that event is copied to the ether. When a processor

posts a secondary event, the processor stalls until an associated primary event is found in the ether with

1In a message-passing system, this address is often called a channel.

3

the same address; if the primary event has an associated data item, that data is copied to the processor

posting the secondary event. We call this pairing of primary and secondary eventsevent matching.

1.2.2. Number of Computational Units

The number of computational units in MIMD parallel architectures vary widely. The definition

given above does not preclude the use of a single computational unit by several processors2. In the

general case, in order to preserve the liveness of each processor, the usage of the computational unit

must be shared by interleaving groups of instruction executions from each processor. This requires that

the computational unit switch contexts regularly—i.e. that the state of one processor be saved from the

computational unit’s state (e.g. registers, program counter, pointers to address space), and that the com-

putational unit adopt the state of another processor. In general, an algorithm which is encoded to use

many more processors than there are computational units will consume more time for context switch-

ing than one which is encoded to use approximately the same number of processors as computational

units. An algorithm which uses fewer processors than there are computational units will use those

units ineffectively.

This work will address this problem by presenting a program as a fairly large collection of fairly

small segments. When a segment begins execution, it will have no state, nor will it have state when it

has completed. A segment will not begin execution until all of the resources that it needs are available

to it, so a segment will never need to pause during its execution. In this way, a program execution con-

sists of packing (i.e. scheduling) these segment executions onto the computational units at hand, with

little or no need to switch contexts during segment executions, and no need to save or restore state

between segment executions.

2 In common usage, these processors would be called processes or virtual processors.

4

1.2.3. Architectural Implementation of Ether

Current architectural implementations of ether can be broadly categorized by the scalability of

the pending event store and of the communication bandwidth required to match pending primary

ev ents with secondary events, where scalability refers to the ability of the architecture to accommodate

more processors. Non-scalable communication is often implemented with a small number of fixed-

bandwidth busses used for communication by all processing units, while scalable communication is

implemented using a network of communication channels which grows with the number of processors.

A non-scalable event store is often implemented by memory units which share common access paths,

while a scalable event store is often implemented with several memory units, each with one or more

autonomous access paths. Non-scalable event stores are often augmented with scalable caches.

1.2.4. Physical Characteristics of Ether

The physical characteristics of ether can be analyzed in terms of bandwidth, latency, and over-

head. Bandwidthis the number of events and/or size of events that can be under transport at any one

time. Latencyis the time required to communicate (the news of) an event from one arbitrary processor

to another.Overheadis the amount of processor time required to post an event.

These physical characteristics are related to architectural characteristics. Scalable communica-

tion is usually accompanied by relatively high latency, due in part to the fact that the larger number of

processors accommodated requires longer communication distances. More significantly, the higher

latency can be attributed to the techniques used to implement scalable communication. Since imple-

menting a unique communication path from every processor to every part of the event store would be

prohibitive, some paths are shared and/or pass through intervening processors, and routing data

through these paths takes time. Scalable communication is also usually accompanied by high over-

head: High latency makes it advantageous to associate a large amount of data with each data event, so

5

the communication system must be prepared to handle these large, variable-length events.

1.2.5. Semantics of Ether

The semantic characteristics of the ether can be categorized into buffering, destructiveness, data

(and granularity), and partitioning. An event pair isbufferedif the ether can accommodate multiple

primary events for a given address, unbuffered if it keeps only the latest. Even ether which supports

buffered events is not infinite, and may lose events or fail catastrophically if too many unmatched pri-

mary events are posted. For buffered event pairs, if multiple primary events are found which match a

secondary event, the oldest primary event is usually used for the match. An event pair isdestructiveif

the secondary event removes the matched primary event from the ether, non-destructive if the primary

ev ent is not removed. An ev ent pair is adata pair if the primary event contains a data field which is

copied to the processor posting the secondary event when a match occurs. A data pair will be said to

have largegranularity if the data associated with the event can be large and variable-sized, fine granu-

larity if the data is small and fixed size. An event pair ispartitionedif the address associated with the

primary event uniquely identifies the processor which will post the secondary event.

These semantic characteristics are traditionally a result of physical characteristics. As already

mentioned, in a high-latency ether, it is advantageous to use large-granularity events. The use of parti-

tioning can reduce the effect of latency by allowing the primary event to be forwarded directly to the

processor which will post the secondary event, thereby avoiding the latency when the secondary event

is posted. Buffering allows latency to be hidden through pipelining, and allows multiple primary

ev ents to be posted to a given address without waiting for verification through the ether (i.e. handshak-

ing) that the previous primary events have been matched each time. For these reasons, a popular

semantic combination for high-latency ether consists of a(send, receive) large-granularity

ev ent pair which is buffered, destructive, and partitioned. We call this combination of semanticsmes-

sage-passing.

6

When the latency of the ether is low, the amount of data passed in a data event can be small, and

to keep overhead low, a fixed size datum is usually used. Partitioning is not needed, and is restrictive:

if the processor which will post the secondary event is determined without knowledge of the processor

which will post the primary event, partitioning adds extra overhead by requiring an extra event match

to communicate this "demand" to the primary event poster. Buffering is also not needed, and imposes

extra overhead. For these reasons, a popular semantics for low-latency ether consists of a(write,

read) fine-granularity event pair which is unbuffered, non-destructive, and non-partitioned, and a

(relinquish, acquire) no-data event pair which is unbuffered, destructive, and non-

partitioned. We call this combination of semanticsshared-memory.

The use of destructiveness to block a processor from taking action until it is safe (i.e. to achieve

synchronization) is independent of latency, and so is present in both shared-memory and message-

passing semantics. It plays the additional role of removing events from the ether in message-passing

semantics.

The two event pairs of shared memory are often used in tandem. Ether addresses are logically

organized into structures, and each structure has another address designated as a lock. A processor

posts anacquire ev ent for the lock of a structure before posting anyread or write ev ents for

addresses within a structure, and follows reads and writes with arelinquish ev ent for the lock.

This protocol ensures that at awrite ev ent will not be posted concurrently with an other event to the

same address, and allows all events between theacquire andrelinquish to be considered as an

atomic event. The protocol is relaxed when other aspects of the algorithm ensure that reads and writes

to the same address are correctly ordered—e.g. when all further accesses to a given address areread s.

The protected data structure has some similarity to a large-granularity event, but is different than mes-

sage passing in that it is non-buffered, the lock events are not partitioned, and when the locking mecha-

nism is not used, multiple processors can post concurrentread ev ents to the structure elements.

7

There are some existing MIMD architectures which do not fit our ether model. Some examples

are those which perform synchronous message passing, in which the processor posting the primary

ev ent also stalls until the event is matched, and architectures which have "full/empty" bits associated

with their addresses that do not have fixed semantics—i.e. a primary event may set either set or clear

the bit, a secondary event may wait for the bit to either be set or cleared.

Although the semantic combinations described here are, to some extent, driven by physical char-

acteristics, and therefore by architecture, portability is rapidly becoming an important factor. Imple-

mentations of shared-memory semantics on high-latency ether[29] and message-passing semantics on

low-latency ether are growing more popular. Usually, caching is used to compensate for high-latency

ether.

This work will attempt to develop an ether semantics which addresses the needs of both high-

and low-latency ether. To accomplish this, we keep overhead low by supporting small, fixed-size data

ev ents while providing high-level destructive event pairs for acquiring ownership of a large number of

ether addresses at one time, allowing them to be transported when ownership is established in a high-

latency environment. We support a more relaxed version of partitioning which allows a single address

to be associated with a subset of processors, thereby allowing complete partitioning to address latency

issues on those occasions when the processor posting the secondary event is known in advance, but do

not require partitioning for the other occasions. We provide enough information for an implementation

of the model to optionally provide buffering when it will not affect the semantics, but the semantics do

not include buffering.

1.3. Parallel Algorithms

According to Knuth[28], an algorithm is a set of rules which gives a sequence of operations for

solving a specific type of problem. Even if we avoid questions of how a set can "give" a sequence, and

8

whether the rules of an algorithm truly form a set, this definition states that an algorithm is a means of

expressing a sequence of operations. By this definition, a parallel algorithm is not an algorithm at all.

We therefore weaken this definition somewhat, defining an algorithm as a means of expressing a set of

computations for solving a specific type of problem. A computation will be the representation of a

function which maps some input and initial state into some output and final state. If the set of compu-

tations produced by an algorithm always contains exactly one element, we call the algorithm determin-

istic, otherwise we call it non-deterministic.

The role of a computation is to capture the operations occurring in the computational unit(s) in

such a way as to be able to reconstruct them or analyze them at a later time. The form of a computa-

tion must reflect this role. The traditional form for a computation, a sequence of operations, is a result

of the nature of traditional computational units: there is but a single point in space where computation

is being performed, so a space-time diagram of the computation is a sequence. When there are multi-

ple processors (or humans, or heads on a Turing machine), the space-time diagram of the computation

is no longer linear, so a sequence is an unsatisfactory structure.

The sequences of operations performed by each processor in a parallel architecture, considered

as a set of sequences, does not in itself denote a computation because it does not include enough infor-

mation to determine matched events and therefore does not denote a function. When the flow of pri-

mary events to secondary events is included in the space-time diagram, it forms a partial ordering of

operations. This partial ordering does denote a function, and is the form we will use here for a parallel

computation[37]. A parallel algorithm, then, is a means of expressing a set of partial orderings of

operations.

Parallel algorithms are traditionally expressed as sets of processes. A process is different from a

sequential algorithm only in that it expresses sequences of operations which include event postings.

Determining the set of partial orderings expressed by a parallel algorithm in this form can be very

9

difficult, since determining possible event pairings requires keeping track of all of the possible combi-

nations of internal states of each process and all of the possible pending primary events at any time.

Is there a better representation for a parallel algorithm? A sequential imperative algorithm can

be considered as a sequential computation which has been "folded up" to be more compact, with the

branches representing the folds and the basic blocks giving the sequences of operations which become

the computation. The semantics of the language in which the algorithm is expressed provide the rules

for unfolding the algorithm into a computation. This similarity of algorithm and computation aids in

understanding their correspondence. It is our thesis that parallel algorithms can be made easier to

understand if their representation more closely resembles a folded partial-ordering of operations. To

allow an algorithm to be nondeterministic, the semantics of our method will allow some algorithms to

be unfolded in more than one way.

Applicative (functional) and data flow languages provide one starting point for this work, in that

they also express computations which are partial orderings of operations, and resemble their computa-

tions mathematically. Unfortunately, these languages have some characteristics which make them poor

choices for representing parallel algorithms:

(1) The operations (primitive functions) in these languages are small (i.e. execute in a very short

time). Cues for determining how these operations should be scheduled on processors for maxi-

mum efficiency are not apparent from the partial ordering alone.

(2) The languages use single-assignment (or no-assignment) variables to signify data dependences.

This paradigm provides few cues as to how memory can be used and re-used efficiently.

(3) They are deterministic.

The first problem can be addressed by simply increasing the size of the operations. But as the

operations get larger, the amount of data that they consume and produce also gets larger. This aggra-

vates the second problem, since an operation updating a small part of a large data structure needs to

10

create a new copy of the data structure as a result to preserve referential transparency.

As operations become larger, they also consume more inputs and produce more results.

Although some applicative languages allow an operation (i.e. function) to return several results, the

textual (linear) form of these languages does not provide for a natural representation for composing

these functions.

These drawbacks to large operations will be addressed here by allowing an operation to return

several results3, and by allowing a single variable to serve as both an argument and a result to an opera-

tion. Even so, an operation will specify a function from its inputs before evaluation to its outputs upon

completion. Traditional functional composition is no longer suitable for operations of this form, so an

alternate form will be introduced.

The ability to use a single variable as both the input and output of an operation rules out the use

of single-assignment variables to coordinate operation executions. One possible alternative method is

to assign each operation application (called aninstruction) a condition, or guard, which must be satis-

fied for the instruction to execute. Unfortunately, the generality of guards obscures the possible affects

that the execution of one instruction can have on the ability of others to execute. The partial ordering

defined by the parallel algorithm becomes obscured by the multitude of possible combinations of val-

ues of variables. Values become overloaded, being used for both the data being transformed by com-

putations and as a direct means of controlling the execution.

Single-assignment variables and guards are similar in that they both rely on the state of some set

of variables to determine whether an instruction can execute; either the "defined-undefined" state of

single-assignment variables, which we will termcontrol state, or the values within variables, which we

will term data state. The excessive power of guards comes from their ability to depend on so many

3 This is an entirely different tack than is taken with curried functions, where each function takes one argument and pro-
duces one result (which may be another function).

11

more possible states per variable, and to depend on variables that are not used by the instruction being

guarded. The restrictiveness of single-assignment variables results from the small number of possible

states (i.e. two) and from the specific semantic meanings assigned to those states which is not under the

algorithm’s control. A middle ground can be achieved by extending variables to have more possible

control states, allowing control state to serve as a simplified form of guard.

Removing the fixed "defined-undefined" usage of control states requires that we manage the con-

trol states explicitly. An instruction in our model will specify the control state which each of its vari-

ables must have to enable execution, and will determine the final control state that those variables will

be left with after execution. Non-determinism is introduced as it would be with guards, by allowing

different instructions to access the same set of variables under similar conditions (identical control

states). To preserve as much information as possible about the effects of each instruction on the con-

trol state of its variables, the range of possible final control states for each instruction will be made

explicit.

Another cost of removing the special semantics of the "defined-undefined" control states is effi-

ciency. When a single-assignment variable has been defined, it can be read by many functions concur-

rently with impunity, and the next version of the variable can be pre-calculated. We will provide tech-

niques that allow buffering and multiple-readers in an implementation, even while the model presented

to the user provides atomic access to variables.

These extensions to functional languages remove some of the mathematical resemblance of algo-

rithms to their computations. In its place, we look toward a topological resemblance. If a parallel

computation is a partial ordering and thus two-dimensional, it is reasonable to assume that a folded

computation would also be two-dimensional (i.e. a graph). It is this syntax which gives our model its

name: Function Networks, or F-Nets. The exact form of a computation and the semantics for unfold-

ing an F-Net into a computation will be described. A textual syntax will also be provided, where each

12

instruction resembles a subroutine call.

1.4. Preserving Sequential Semantics

The most important part of the specification for a stand-alone sequential algorithm is the input-

output mapping that it implements. Provided that the algorithm is not real-time or interactive, factors

such as the speed with which it performs that mapping, or the order in which inputs are accepted from

different sources or outputs are produced to different sites, do not alter the correctness of the algorithm,

though they may affect its intrinsic value in comparison with other algorithms which implement the

same input-output mapping. We call a modelseperableif the input-output mapping expressed by each

sequential process is the only characteristic which affects its behavior within a concurrent model. A

direct result of this property is that the implementation of that mapping has no effect on the overall

semantics, so each sequential algorithm can be implemented separately, using only its partial function

as a specification. Another is that all the existing technology, methods, and languages which exist for

developing, expressing, and analyzing sequential algorithms can be utilized.

Separability infers other properties. Since the input-output mapping enforced by each sequential

algorithm could conceivably be implemented by first reading all inputs then producing all outputs, a

separable model cannot depend on concurrent execution of the sequential algorithms: There must be a

serial schedule in which the algorithms could be executed. In addition, if an algorithm has multiple

input sources, they simply represent multiple arguments to the function expressed by the algorithm.

Since neither the order in which these arguments will be "read" nor the time that it will take the algo-

rithm to evaluate is part of the description of the partial function, the execution of the algorithm must

be considered to be atomic: it either evaluates completely, or does not evaluate at all.

Separability, and therefore serializability, has an important implication with regards to portabil-

13

ity. If the functions expressed by the sequential algorithms are total4, each algorithm will necessarily

complete in a finite amount of time, so the parallel program can be executed without context switching,

no matter how many or how few processors are available in a target architecture, increasing portability.

Since it is undesirable to restrict sequential algorithms to express total functions, and nearly always

impossible to show that they are, this finding is of limited utility, but if it is assumed that algorithms are

in fact total in most practical cases, they can be executed without context switching by default, invok-

ing context switching only if available processors are monopolized by long-running algorithms.

1.5. Conclusion

A description and rationale for the F-Net model of computation is presented in the remaining

chapters. F-Nets are designed to function well with either high- or low-latency ether. The model is

separable, so traditional sequential languages can be used for the bulk of the code. Algorithms in the

model can be expressed in a graphical form resembling the folded partial orderings of their computa-

tions.

Chapter 2 describes related work which addresses many of the same goals. Chapter 3 builds the

F-Net model from scratch, with design decisions driven by the above goals. Chapter 4 provides a for-

mal semantics for the model, expressed mathematically as a set of axioms. This includes defining the

form of a computation in the model. Chapter 5 relates the F-Net model to other formal models of con-

current computation. Chapter 6 develops efficient and correct implementations of the model to run on

top of ether with shared-memory and message-passing semantics. Chapter 7 addresses some of the

shortcomings of the model, proposes how the model could be extended used as the basis for new tools

and architectures for parallel processing.

4 They also need to be continuous, in the denotational semantics sense. This is assured by the fact that they are expressed
in a language with continuous semantics.

14

CHAPTER 2

Related Work

2.1. Introduction

The first chapter provided an overview of the goals of this work. This chapter will describe other

models which have been developed to address some of the same goals. Unfortunately, this includes

virtually all work performed in the field of parallel processing. We attempt here to sample many of the

techniques and relate them to those goals, concentrating on those that have the most similar set of goals

to F-Nets.

The difference between a model and a language is not clear. A language can be considered as a

user-oriented model, and the role of a language processor is to convert a user-oriented model to an

architecture-oriented model. Judging whether a model is architecture-independent therefore requires

knowledge of the language processor, the characteristics of programs which it processes, and the simi-

larity of the user model to an architecture model. This chapter will make no attempt to address the first

two of these three factors.

The models discussed here will each be broken into their process models and their ether models.

A common process model consists of sequential processes which post events to the ether. The method

of initiating processes may vary, but there are commonly no restrictions on the events that a process

may post nor on the persistence of the process. The processes are typically expressed in a traditional

sequential language, though these languages sometimes require minor extensions to provide the capa-

bility to post events. We call such a process model thetraditional process model,

15

If a parallel computation model provides a traditional process model and unrestricted access to

the ether, the model will not demonstrate separability. This can be seen from the fact that deadlock is

possible between processes, since each may post primary events and each may post secondary events

in reverse orders. Thus, the behavior of a process depends on the implementation of its input-output

mapping—i.e. the order in which it posts events.

2.2. Shared Memory and Message Passing

Most current parallel computer architectures are designed to support an ether with one of the

semantic combinations described in the first chapter: shared-memory or message-passing. These archi-

tectures are usually supplied withmultitaskingtools to facilitate a traditional process model for posting

ev ents to this native ether. Message-passing events andrelinquish and acquire ev ents for

shared memory are often implemented by subroutines, whileread and write ev ents for shared

memory are usually implemented by utilizing a loader to map some portion of the ether addresses into

the process address space, at which time ordinary memory operations on those addresses are used.

When architecture-independence is not an issue, multitasking provides low-level control over the

native ether. Because this approach is so popular, sev eral tools have been developed with the goal of

standardizing the interface to these native ethers and providing some more complex ether events, such

as barrier and broadcast, which can be built directly from the low-level ether events. These tools are

meant to ease programming and address independence of number of processors, but are not meant to

be ether-independent. For shared-memory ethers, these tools include The Force[24], the monitors

package from Argonne National Laboratories[8], Large-Grain Data Flow[6], and Schedule[16]. Pack-

ages for message-passing ethers include the messages package from Argonne. A restricted form of

Schedule[7] has also been implemented for message-passing ether.

16

An ether with message-passing semantics can be implemented relatively easily on top of an ether

with shared-memory semantics by using a subroutine library to manage the ether, and to match and

copy events. However, the overhead required to copy events to and from ether, the large granularity of

ev ents, and the required partitioning of the address space make this an ineffective programming envi-

ronment for low-latency ether. To update a small portion of a large event in the ether, the entire event

must be copied to the process, altered, then copied back to the ether. If multiple processes wish to read

the same large event concurrently, two events must be posted and matched. We will refer to these

drawbacks as theupdate-in-placeandmultiple readersproblems, respectively.

An ether with shared-memory semantics, often called Shared Virtual Memory (or Virtual Shared

Memory)[29], can be implemented on top of an ether with message-passing semantics by passing mes-

sages whenever an attempt is detected to access a shared-memory ether address which is not currently

local to the posting processor. To provide sufficient granularity of events, implementations rely on

passing and caching several sequential shared-memory ether addresses at one time as apage. The

number of page transfers can be minimized by implementing a causal ordering[2] which respects

shared-memory semantics but has the effect of arbitrarily postponing some processes. In some imple-

mentations, these postponements can be indefinitely long. The efficiency of these methods depends a

great deal on the locality of access within the virtual shared-memory address space.

2.3. Parallelizing Compilers

A parallelizing compiler takes a standard sequential program and produces a parallel program

with identical input-output behavior. By definition, this approach demonstrates separability but limits

expressibility: e.g. non-deterministic programs cannot be expressed. Efficient use of processors and

ether is completely determined by the capabilities of the compiler. Currently, efficient mapping can

only be performed for loops, and only for shared-memory ether[4].

17

Some compilers accept a slightly extended version of a sequential language (usually Fortran) in

order to allow the programmer greater expressiveness. Adding these special constructs to a program

often does not alter its semantics in any way, but informs the compiler of locations in the program

where opportunities for parallelism might be found. In some cases, these extensions add small

amounts of non-determinism to the program in order to increase parallelism. In most cases, these

microtaskingextensions apply only to Fortran DO loops and produce object programs for shared-

memory ether[27]. Similar extensions for message-passing ether are still in the experimental

stages[10].

Another method for the programmer to augment the information present in the source code is

through the use of interactive parallelizing tools such asRn[3] and Faust[21].

2.4. Linda

Linda[11] presents a traditional process model, and an ether model calledtuple space. In this

ether, events do not include addresses per se—the secondary event matches a primary event based on

characteristics of the data value in the event. There are two event pairs defined for the ether,(out,

in) and (out, rd) , which share the same primary event. These pairs have large granularity, are

buffered, and are non-partitioned. The first pair is destructive, the second is not.

The lack of addresses in the ether model does not correspond to any common hardware imple-

mentation of ether. To compensate, the designers of the model propose methods for determining an

address or partial address (i.e. hash table bin) for some events based on a global analysis of all event

postings within the algorithm. The same analysis can sometimes yield a partitioning for these

addresses. In cases where a complete address cannot be determined in this way, a look-up must be per-

formed (at run-time) to match events.

18

Tuple space offers benefits over message passing by avoiding explicit partitioning, providing a

more natural interface to high-latency ether on demand-driven applications. When partitioning is bene-

ficial, it can sometimes be computed without user involvement. However, the associative matching of

ev ents incurs overhead in both low-latency and high-latency implementations, and the multiple-readers

and update-in-place problems are not addressed for low-latency environments. The fact that the events

cannot be partitioned in some cases magnifies the effect of latency in high-latency environments.

2.5. Unity

Unity[12] provides only a process model: The ether model is identical to memory (i.e. shared-

memory minus the(relinquish, acquire) ev ent pair). Each process consists of an optional

guard and a deterministic calculation. There is no synchronization: a program execution consists of

attempting to execute each process infinitely many times, in no particular order. A process execution

will succeed, reading some ether addresses and writing some other (not necessarily disjoint) ether

addresses, if and only if the guard is satisfied. The result of a computation is defined as a fixpoint of

this computation—i.e. the state of the ether when no further changes can occur through further compu-

tation.

The execution of each process is atomic by definition, so this model demonstrates separability.

The model was originally presented as a teaching tool, and presents a computation as a non-

deterministic sequence of operations rather than as a partial ordering. The role of a language processor

will be to determine efficient partial orderings from this specification, and to use high-latency ether

effectively. There is little in the model itself to ensure that these will be possible.

19

2.6. Reactive Kernel

The Reactive Kernel[5] implements a traditional process model, and an ether model which con-

sists of a memory semantics plus a(xsend, xrecv) ev ent pair which is buffered, partitioned, and

destructive, similar to a message-passing semantics. The latter event pair is used to transfer acapabil-

ity, which can be considered as a "key" which "unlocks" some range of ether addresses. A giv en capa-

bility can be held by only one process at a time. There also exists an ether server which dispenses and

collects capabilities.

A process cannot postread or write ev ents for an ether address unless it holds a capability

which includes that address. The intent is that when a process wishes to pass some state to another

process, it acquires a capability from the server, posts data events, then passes the capability to another

process by posting anxsend ev ent containing the capability. When a process wishes to acquire state

from another process, it acquires a capability by posting axrecv ev ent, then performs data events

before passing the capability back to the server or on to another process.

In a high-latency environment, all of the data events described by a capability can be transported

through the ether with the capability. In a low-latency ether, all data events can be left stationary. The

update-in-place problem is addressed by this model, but the multiple-readers problem is not.

2.7. Specification Languages

Petri nets[36] are a prime example of a model which has partial orders as computations and in

which "algorithms" are the folding of those computations. Simple Petri nets do not provide any notion

of data, and therefore do not present an ether model, but the do provide a natural representation of con-

currency. They are used primarily as a specification language for concurrent processes.

Some data extensions to Petri nets which have retained many of the Petri Net semantics are

Macro E-nets[34], which support high-level Petri-net-like constructs designed to model computer

20

architectures, and VLP[19], which is presented as a method for introducing synchronization into speci-

fication-level dataflow diagrams.

CODE[39] is a high-level specification language for parallel processing, allowing the user to

specify dependences and exclusion between abstract processes.

2.8. Dataflow Languages

Dataflow is a general term used to refer to networks of processes connected by buffered streams.

In terms of the ether model we have discussed, the semantics of a stream ether consists of a

(define, use) ev ent pair which is buffered and destructive. Unlike that ether model, both the

define and use events are partitioned: i.e. a stream can be written by only one process and read by only

one process. This provides for demand-driven semantics, and always results in deterministic programs

(providing the composite processes are deterministic)[25]. A primary selling point of dataflow lan-

guages (e.g. SISAL[30] and Id) is the fact that they demonstrate separability.

The processes in a dataflow model traditionally consist of elementary arithmetic operations.

Dataflow languages provide the ability to compose functions using standard functional composition

and single-assignment variables. The(define, use) ev ent pair is not efficiently implementable in

high-latency ether because of its fine granularity. In low-latency ether, the destructiveness of the event

pair causes undue copying. In either case, the fine granularity of the processes causes excessive over-

head due to scheduling. Special architectures[35] are being constructed to minimize process schedul-

ing overhead and overlap computation with communication latency. More practical approaches for

low-latency ether involve compiler technology to increase the granularity of operations and re-use

memory efficiently[20].

21

2.9. Coarse Grain Data Flow

The efficiency and use of ether can also be increased by allowing the user to create larger pro-

cesses explicitly, often in a traditional imperative language, thereby increasing the granularity of ether

ev ents. Examples include MUPPET[33], Loral DGL[26], and TDFL[40]. These models retain the

problems intrinsic to message-passing on both high- and low-latency ethers. Non-determinism is intro-

duced in some of these by allowing some operators to execute when only some subset of their argu-

ments are present, thereby allowing streams to be arbitrarily merged.

2.10. Actors

Actors[1] is a theoretical model of processes (actors) which correspond via messages in a very

restricted framework. In this model, each actor receives messages through a single message queue. As

a result of reading a message, an actor can create other actors, send messages to other actors, and

define a new behavior for itself (i.e. to process its next message). The resultant actor program is con-

stantly evolving, with new actors being created and old actors changing behavior. A primary strength

of the actor model is in its formal treatment of message-passing.

2.11. Strand

Strand[18] programs resemble logic programs, consisting of a set of clauses, each consisting of a

head, a guard, and a body. All data is passed using single-assignment variables.

During execution, process calls are deposited to a "process ether", with parameters consisting of

addresses in the data ether. If a call matches the head of a clause, the variables of the clause head are

bound to the same ether addresses as the arguments of the process call, all other variables in the clause

are bound to new data ether addresses, and the guard of the process is checked. If the guard is satisfied

(which requires that all variables in the guard have been defined), the process call is removed from the

22

process ether, and the process calls declared in the process body are deposited. This continues until

primitive processes are called. A primitive process has well-defined in and out arguments, and

executes atomically to define the out arguments based on the in arguments. Primitive processes are

supplied as part of the model, though some implementations allow the user to introduce tailored primi-

tive processes implemented in a sequential language.

All three steps—head matching, clause checking, and reduction—are defined to occur as a single

atomic action. Thus, Strand demonstrates separability. Strand is essentially a dataflow language in

which functions can have multiple results as well as non-determinism (since the heads and guards of

many process definitions may allow many different reductions to occur). Because of the single-

assignment paradigm, this model retains the update-in-place problem of traditional dataflow.

2.12. Paralation

Paralation[38], like Linda, relies on copying and associative lookup for its architecture-

independence. The model actually consists only of a few general data-reduction operators, which are

targeted for implementing algorithms based on data parallelism (SPMD and SIMD), but are specifi-

cally not designed to aid communication between non-homogeneous processes, which is central to

MIMD computing.

2.13. Synchronous Models

Synchronous models such as Occam[23], CSP[22], and CCS[32], provide an ether with mes-

sage-passing semantics, but one in which a primary event will stall if there is no matching secondary

ev ent in the ether. Thus, the ether is never required to store unmatched events: it serves only as a

means of communicating from the poster of the primary event to the poster of the secondary event.

The increased likelihood of a stall in this ether is addressed in CSP and Occam by accompanying it

23

with a fine-grained process model which allows the programmer to offer alternate work whenever a

process stalls.

Synchronous communication is not a real-world phenomenon, and must be built from asyn-

chronous communication. If processors consume space and each processor can post at most one event

at a time, then the posting of events by different processes must occur in a different space or at a differ-

ent time. Thus, for the sender to obtain the message and for the receiver to be informed that it has been

received requires two communications.

Any process which contains a send or receive can stall indefinitely depending on the behavior of

other processes. This could be considered as violating separability. It is the role of CCS to define the

behavior of each process in its environment.

2.14. Historical Perspective

The next section will present the F-Net model as though its features were derived directly from

the goals set forth in chapter 1. In fact, the model was derived as an attempt to formalize the semantics

of Babb’s LGDF technique, modifying or removing those portions of the model which made its imple-

mentation difficult using shared-memory or message-passing semantics. This led to the LGDF2[15]

technique and the F-Net model. The LGDF work, in turn, was developed to provide execution seman-

tics for Data Flow Diagrams such as those used in Structured Analysis techniques[13], for the dual pur-

poses of providing a smooth transition from design to implementation and of developing a parallel pro-

gramming method for shared-memory MIMD computers. This work was also influenced by the work

of Browne. The SCHEDULE model has similar lineage. The VLP model, which is similar to F-Nets,

was dev eloped independently, also with the goal of providing semantics to high-level data flow dia-

grams.

24

CHAPTER 3

F-Nets

3.1. Introduction

The first chapter presented some of the goals of this thesis: to define a model for parallel compu-

tation which is architecture independent, provides separability, and expresses an algorithm as a folded

partial ordering of operations. This chapter will build the model, called F-Nets, providing some justifi-

cation for each step in terms of those goals.

The chapter consists of two major sections. In the first, the basic constructs of the model are

developed by addressing the goals listed above. In the second, methods of including more high-level

information in the F-Net are examined, both in terms of how this information provides the programmer

with a more abstract view of the F-Net’s behavior, and in terms of how a scheduler can take advantage

of the information to optimize performance.

To giv e some grounding to the points made in this chapter, a sample problem will be presented—

to compute

√ 50

i=1
Σ i2

The computation will proceed by initializing a shared variable,i , to 51 and a shared running sum to 0,

then having two worker processes repeatedly decrementi , square the new value, and add the result to

the running sum. When all is finished, another process will take the square root of sum to produce the

final answer.

25

3.2. Building the Model

In this section, we construct the major components of the F-Net model.

3.2.1. Architecture-Independent Ether Model

We begin by defining an ether model which addresses two of the three latency-related semantic

differences presented in the first chapter: granularity and partitioning. Buffering will be addressed

later.

High-latency ether benefits from large-granularity events so that more data is transferred each

time the latency of the ether is experienced, while low-latency ether benefits from fine-granularity

ev ents to keep overhead low. We can accommodate both of these requirements by presenting the ether

at two lev els of granularity. The fine-grained data addresses are grouped into collections which we will

call m-variables(or simply variables, when no confusion will result). For the time being, assume that

each m-variable has an associated address designated as a lock. There are two event pairs defined for

this ether: a non-data event pair,(orphan, adopt) , which is unbuffered, non-partitioned, and

destructive and operates on a lock address, and a fine-granularity event pair,(write, read) , which

is unbuffered, non-partitioned, and non-destructive and operates on a data address. A process cannot

post any data events for an m-variable address until after it has posted an adopt event for the lock.5

When a process is finished posting data events, it may release the m-variable by posting an orphan

ev ent for the lock.

This very closely models the way that shared-memory semantics are often utilized. In this low-

latency environment, the m-variable as a whole can remain stationary in the ether, and all events can be

implemented with fine granularity. In a high-latency environment, the adopt event can be used to move

5 Whether this protocol is enforced by the ether itself or by the processes independently is unimportant, as long as it is en-
forced.

26

the data (i.e. pending data events) associated with the m-variable as a whole through the ether, with

fine-grain data events occurring local to the processor which successfully adopts the variable.

Partitioning can be added by extending the lock associated with an m-variable to a set of locks,

only one of which can be orphaned at any one time, and partitioning the(orphan, adopt) ev ent

pair. Thus, when an orphan event is posted, the process which can perform the adopt event will be

known.

For the F-Net model, we consider partitioning too restrictive for reasons mentioned earlier.

Instead of mapping each lock address to a unique process, we map each to a set of processes. In those

cases where this set contains but one element, this scheme is identical to conventional partitioning. In

other cases, some transport of the m-variable may still be possible in a high-latency environment to a

point closer to all possible adopters. In either case, the scheme has software-engineering benefits over

a non-partitioned scheme, since inappropriate processes are not able to adopt the variable.

We also require that sets of processes to which the locks of an m-variable are mapped must be

disjoint—i.e. that each process has at most one lock of an m-variable mapped to it. This simplifies the

protocol required for a process to adopt a particular m-variable, thus reducing overhead. When the

model has been completely described, it can be seen that this restriction does not restrict expres-

siveness.

The data associated with an m-variable (i.e. the pending fine-granularity data events) will be

called itsdata state. The set of lock addresses associated with an m-variable will be called itscontrol

domain, and the element of that domain which was last orphaned, if any, will be called thecontrol state

of the variable.

An m-variable can be considered less formally as a bin which can contain a data structure (its

data state) and which carries a flag which lists the processes which can adopt it (its control state). An

adoption request for the variable will block until the control state of that variable contains the name of

27

the adopting process. On successful adoption, the control state of the variable will be atomically

cleared, which will keep any other process from adopting it, and the data state will be made accessible

to the process. When finished accessing the data state, the process may relinquish access to the vari-

able by orphaning it, at which time the process must also specify a new control state.

To demonstrate the use of m-variables, we give a first approximation of a solution to the sample

problem. i andsummust be represented within m-variables, since they are communicated among sev-

eral processes. Although both could be kept in the same m-variable, contention can be decreased by

putting them in separate m-variables, since they will be needed by both workers in different phases of

their execution.

We will write the processes in a C-like sequential pseudo-code, augmented with two special

statements:

adopt x

which will post an adoption request for the appropriate lock of m-variablex, and

orphan x as y

which will orphan m-variablex with a new control state ofy. When an m-variable is otherwise men-

tioned within the pseudo-code, it will play the role of a variable which refers to the data state of the m-

variable. We name the m-variablesi andsum to reflect the data stored there. The final answer will be

deposited into an m-variable namedans .

The processes will be namedinit , worker1 , worker2 , and finish . We use a fictional

process,therest , to symbolize the destination of the answer afterfinish produces it, so the end of

the program will be signified when the m-variableans obtains a control state corresponding to this

process.

An attempt at the problem solution follows. This is not a legal F-Net, but illustrates the use of

m-variables.

28

Variables
int i (uninit = {init}, valid = {worker1, worker2});
int sum (uninit = {init}, valid = {worker1, worker2});
float ans (empty = {finish}, full = {therest});

Processes
init
{

adopt i;
i = 51;
orphan i as valid;
adopt sum;
sum = 0;
orphan sum as valid;

}

worker1
{

int temp;

adopt i;
i = i - 1;
temp = i;
orphan i as valid;
temp = temp * temp;
adopt sum;
sum = sum + temp;
orphan sum as valid;

}

worker2
(Same asworker1)

finish
{

adopt sum;
adopt ans;
ans = sqrt (sum);
orphan sum as valid;
orphan ans as valid;

}

The m-variable declarations at the beginning list the type of the data state and the control domain for

each m-variable. The processes which correspond to each element of the control domain are also

listed. The first declared element of the control domain is the initial control state.

29

The problem with this code is that the workers do not stop working wheni reaches 1, and the

finish routine cannot ever adoptsum. It is tempting to change the last line in the workers to

if temp == 1 then
orphan sum as done

else
orphan sum as valid

wheredone corresponds to thefinish process, but the order in which the workers adopti is not

necessarily the same as the order in which they adoptsum. The solution to this problem will be dealt

with later.

An F-Net is illustrated graphically by showing each process as a circle, and each m-variable as a

polygon, as shown in Figure 3.1. The sides of an m-variable polygon represent the elements of the

control domain. (Variables with a control domain of only one element are shown as a line, those of

only two as a rectangle.) The side representing the initial control state of the m-variable is identified

?

ans

finish

part1

sum part2

init

i

Figure 3.1 First Attempt at the Sample Problem

30

by using a thicker line. An arc connects each process to the m-variables which it can possibly adopt:

The polygon side to which it is connected corresponds to the element of the control domain containing

that process. This notation makes the control domain of each variable apparent from the diagram.

Note that for maximum parallelism, the workers must maintain access to their m-variables for as

little time as possible. To facilitate this in the example, a copy ofi is kept intemp . If i contained a

large data structure to be accessed, it might have been more favorable to retain access to the m-

variable, decreasing copying time at the expense of decreasing parallelism.2

3.2.2. Separability

We attain the goal of separability by breaking a process into segments, each of which has the

same semantics and halting behavior as it would if it were executing alone. In other terms, we wish the

computations described by the segments to be atomic transactions—i.e. computations that can be seri-

alized (since the executions are independent) and either never begin or complete (since their halting

behavior is independent of other transactions). A set of transactions is assured to be serializable if and

only if each transaction is two-phase[17]. Two-phase, in the case of F-Nets, means that each transac-

tion can be divided into a growing phase containing no orphan events, followed by a shrinking phase

where all m-variables which were adopted in the growing phase are orphaned.

The bijection above requires that segment executions have this form if they are to have the

desired properties. A segment which posts an event stream which is not of this form can always be

modified to be of this form: If additional m-variables are needed after orphaning some but not all of

those that it owns, the transaction can terminate by orphaning all of the rest of its m-variables and initi-

ating a new segment which begins by re-adopting these variables as well as the newly-needed vari-

ables.

2 Other approaches which do not incur copying or decreased parallelism will also be made possible when buffering is in-
troduced.

31

By definition, an atomic transaction must complete if it shows any evidence of beginning execu-

tion, but we do not wish to restrict our segments to express terminating computations. We can consider

non-terminating computations as atomic transactions by asserting that each m-variable has an addi-

tional element of its control domain called which does not correspond to any process. In terms of the

interactions of other processes with the ether, there is no difference between a segment which orphans

an m-variable with a control state of and one which does not orphan the m-variable at all: In either

case, no process can adopt the m-variable. A non-terminating segment (i.e. one which does not orphan

some of its m-variables) can therefore be modeled as one which orphans some of its variables with a

control state of (pronounced "bottom").The control state will be represented in our system as the

absence of any other control state.

Atomicity guarantees that a transaction will not partially complete, but it does not guarantee that

it will ever begin, even if there is nothing to stop it from doing so. If the model is to provide the power

to demonstrate that programs will execute and produce results (liveness) as opposed to simply limiting

the possible results (safety), the conditions under which transactions will execute must be made

explicit. We do so here:

A transaction will not be indefinitely postponed if the conditions required for its execution (i.e.

the proper control state of the m-variables which it adopts) will be met continuously until it

executes.

This rule has the effect of ensuring that a transaction will not be postponed indefinitely due to dead-

lock.

Liveness (and specifically absence of deadlock) is related to separability, though it is not usually

regarded as such. If the issue of deadlock is avoided at the level of the model, to be addressed at the

algorithm level, the correctness of any new segment (in the sense that it preserves liveness of the pro-

gram as a whole) could depend upon the order in which variables are adopted with respect to other

32

segments. Specifying liveness at the level of the model itself avoids this problem.

The model will not strand the implementor with the very difficult problem of deadlock avoid-

ance. We will require that each segment adopt all of its m-variables in one atomic action. In this way,

an implementation can ensure that all m-variables have the correct control state before a segment

adopts any of them.

3.2.3. Independence of Number of Processors

The liveness rule in the previous section ensures that segments which can execute will eventually

be executed, regardless of the number of physical processors in the architecture, or the number of

transactions to execute on those processors. The ability to adopt all m-variables in one atomic action

aids an implementation in efficiently sharing physical processors among processes, since each segment

can be made to block exactly once, then execute to completion, minimizing the need for context

switching.

The overhead required by a context switch can be reduced even further by forbidding the passage

of any persistent local state (i.e. program store, registers, and program counter) from one transaction in

a process to the next. Explicit passage of persistent local state between transactions can be handled the

same way as the passage of any other data state; via an m-variable. The data state of an m-variable is

persistent by definition, and ’local’ means only that the control domain of the m-variable contains only

one control state, which is mapped to a single process.

The program counter can also be mapped to the control state of an m-variable. To illustrate this,

consider the code of a process which hasn statements which mark the beginnings of segments—i.e.

where all of the m-variables for the transaction are atomically adopted. Ifn different processes are

constructed, each identical to the first except for an initial branch to one of the segment beginnings and

the additional adoption of a common m-variable (say, STATE), each transaction can select the next pro-

cess (and therefore segment) to execute by orphaning STATE with that next process as the new control

33

state. The control state of STATE is now effectively the persistent program counter for the original

process between transactions.

When persistent local state is ruled out, a process per se has no role. All state and control is

managed explicitly by the segments. If more state is carried between segments of different processes

than is carried between segments of the same process, the concept of process becomes somewhat con-

fusing. The F-Net model will therefore not include the concept of a process: an algorithm will consist

of a set of these segments, calledinstructions. Since an instruction is deterministic, has no state before

adopting its variables, and adopts all of its variables in one atomic action, it must adopt the same set of

variables on each execution. By making this set of variables part of the specification of the instruction,

theadopt construct can (and will) be omitted from the model.

3.2.4. Sample Problem

In the sample problem, each worker consists of two transactions. It would be possible to unite

those two into one by adopting both m-variables first, but this would counteract the parallelism

achieved by having two separate m-variables. Since theinit process is only executed once, it will

simplify its execution to merge its two transactions. We present the sample problem again below and

in Figure 3.2. This time, the code is correct, and is structured just as it will be in the final model.

Variables

int i (uninit inrange outrange);
int hold1 (empty full);
int hold2 (empty full);
int sum (uninit valid);
float ans (empty full);

Instructions

init [uninit i, uninit sum]:
i = 51;
orphan i as inrange;
sum = 0;

34

orphan sum to valid;

part1 [inrange i, empty hold1]:
i = i - 1;
temp = i;
if (i > 1)

orphan i to inrange;
else

orphan i to outrange;
hold1 = temp * temp;
orphan hold1 as full;

part2 [inrange i, empty hold2]:
...
hold2 = temp * temp;
orphan hold2 as full;

red1 [full hold1, valid sum]:
sum = sum + hold1;
orphan sum as valid;
orphan hold1 as empty;

red2 [full hold2, valid sum]:
sum = sum + hold2;
orphan sum as valid;
orphan hold2 as empty;

finish [outrange i, empty hold1, empty hold2, valid sum, empty ans]:

orphan i as outrange;
orphan hold1 as empty;
orphan hold2 as empty;
ans = sqrt ((float) sum);
orphan ans as full;
orphan sum as valid;

Note that the two transactions in each worker have become two separate instructions, called

part and red (for reduce). Since data must be carried between these instructions, additional m-

variableshold1 andhold2 have been introduced. Also note that each instruction has been given a

heading declaring the variables it will adopt and the control state of each variable which correspond to

the instruction. As a result, the variable declaration lists only the control states of each variable, and

adopt statements have been omitted from the languages.

35

n

add_n

n

add_n

n_sqrd

n_sqrdto51

to0

n sqrt_n

n

n

uninit valid

finish

part2

i

hold1

hold2

red2

red1

sum ans

init part1

full

full

empty

empty

empty full

outrange

uninit

inrange

Figure 3.2 Second Attempt at Sample Problem

There is now a very precise way of specifying when thefinish instruction should execute:

when apart process has taken the last value fromi , and when no more temporary values (from the

hold m-variables) are waiting to be added into thesum m-variable. Note that thefinish instruc-

tion does not need to access the data states ofi , hold1 , or hold2 , but needs to adopt them anyway

as a condition that it can execute.

The final control states left by the F-Net are similar to the initial control states so that only minor

modifications would be required to make the F-Net restartable.

3.3. Higher Level Characterization

In this section, we look at ways of separating high-level information about the behavior of each

instruction from its implementation. This information will provide an abstract view of an F-Net that

36

can be utilized for documentation and automated error-checking (if the low-level code is already writ-

ten) or specification (if the low-level code is not). A scheduler can also use the abstract view to opti-

mize execution.

3.3.1. Instruction Specifications

Since an instruction is deterministic and has no persistent local state before it begins executing,

its behavior during execution must depend only on the data states of its m-variables when they were

adopted. This behavior consists of reading and writing the data state of the m-variables, and possibly

orphaning some of them with new control states. (Even if it does not orphan some of the m-variables,

it will be as though it has orphaned them with a control state.)

Thus, an instruction can be fully characterized by the set of m-variables that it will adopt, and a

function (called thefiring function) describing the new data and control states of these m-variables

based on their data states when they were adopted. This specification is complete: it describes pre-

cisely the effect of the instruction on the F-Net’s state. Put another way, if instructions in an F-Net

execute according to the rules already given, then any instruction implementation which fulfills this

specification will exhibit exactly the same possible effects as any other.

Although such a specification is complete, some important information about how each m-

variable will be used is left hidden within the firing function. Specifically,

Read usage:

Is the result of the firing function ever dependent on the data state of the m-variable?

Write usage:

Does the firing function ever specify a different new data state for the m-variable than that with

which it began? (i.e. does the data state ever change as a result of executing the instruction?)

37

Possible new control states:

Which new control states might the firing function assign to the m-variable?

We will require that this information be specified separately, and will be called the instruction’ssigna-

ture for its arguments. It is shown in the graphical representation by introducing arrowheads on the

arcs (toward the instruction for read usage, away from the instruction for write usage) and "fingers"

(short arcs) within the m-variables at the end of the arcs to point to the possible new control states. See

Figure 3.3. By including this information as part of the F-Net, much of the overall data and control

flow can be determined without examining the implementation or firing function associated with each

instruction.

takelast inrange

uninit

outrange

fullempty

empty

empty

full

full

part1init

anssum

red1

red2

hold2

hold1

i

part2

finish

validuninit

n

n

sqrt_nn

to0

to51 n_sqrd

n_sqrd

add_n

n

add_n

n

Figure 3.3 Final Diagram of Sample Problem

38

3.3.2. Ensuring That Signatures are Correct

The signature will be used as more than just a way of describing what an instruction does—it

will be taken as the programmer’s specification of restrictions on what the instruction should (and

should not) do. This allows some programming errors within the implementation to be caught (e.g. the

alteration of the data state of a m-variable without write usage), but also informs the run-time system,

in some cases, as to how the implementation should be interpreted. For example, if an instruction

implementation does not assign values to (part of) a m-variable’s data state, this could be interpreted as

either leaving the old values or as reinitializing the data state to some "empty" value. If the m-variable

is identified in the signature as having only write usage (no read usage), then the latter interpretation

must be taken, since the new contents of the m-variable cannot depend on its previous contents.

There is one case, however, where it cannot be determined whether an implementation matches

its signature.If a signature declares that the control state is not a possible new control state for a

given m-variable, this is equivalent to declaring that the part of the implementation which orphans the

m-variable will be executed. Determining whether this is true would require careful analysis of the

user’s code at best, and is intractable at worst. To circumvent these problems, the control state will

alwaysbe assumed to be a possible new control state for every m-variable for every instruction—with

one exception, described in the next section.

3.3.3. Multiple Readers and Buffering in Ether

The semantics of the model ensure that only one instruction can adopt an m-variable at any one

time. Even so, if the instruction which currently owns the m-variable will not write it (as per its signa-

ture), and another instruction which will not write it becomes ready except for the fact that the m-

variable has not been orphaned by the first instruction, a scheduler could optimistically begin the sec-

ond instruction, and both could read the m-variable concurrently. But if the first instruction never

orphans the m-variable with the proper control state, the optimistic transaction would have to be

39

backed out—an action which we would prefer to avoid.3

But if the first instruction canpromisethat it will eventually orphan the m-variable with the

proper control state, the second (concurrent) instruction will no longer be optimistic. That is, even

though the model logically allows only one instruction to adopt a m-variable at a time, in this circum-

stance an implementation could allow multiple instructions to read the m-variable concurrently with no

risk of lost work.

This is exactly the approach we will take. If the signature of an instruction states that a m-

variable will not be written, and if exactly one new control state for that m-variable is listed, the m-

variable will be callednon-volatile, and the signature will be taken as a promise that the instruction

will eventually orphan the m-variable with that control state. This is the condition alluded to at the end

of the last subsection where a new control state of is not assumed as part of the signature. If a sched-

uler suspects that an instruction will attempt to break its promise by never orphaning the m-variable,

the scheduler may give the instruction a copy of the data state on the m-variable and assign the new

Control state to the m-variable itself.

This same solution also provides for buffering, even without altering the semantics of the ether to

include buffering. Suppose the contents of some m-variable (e.g.hold1 in the sample problem) is

written by one instruction (e.g.part1), and read by another (e.g.red1) which has non-volatile

access to the m-variable and always passes the m-variable back to the writer. As soon asred1 begins

execution the first time, the scheduler knows that it will eventually finish, so execution ofpart1 can

be initiated again, even beforered1 has finished, provided that the new data state which it writes to

the m-variable is buffered long enough to avoid conflicting with the version being concurrently read.

Thus, some amount of buffering can be implemented by a scheduler in this case, even though buffering

3 "Backing out" means to nullify any effects that a transaction has had on the state of the system, essentially "undoing" it.

40

is not explicitly present in the model.

3.3.4. Instructions Performing the Same Operation

Different instructions may be alike in the transformations they perform to the data (i.e. their

operation), but differ only in the m-variables and the control states of those m-variables to which they

refer (i.e. theirbinding). Cases in point are thepart1 and part2 instructions or thered1 and

red2 instructions in the sample program. Entering and maintaining both instruction implementations

seperately, in spite of the fact that they consist of almost identical code, is impractical. From another

standpoint, the information that they are identical in some sense is missing from the F-Net, and could

be used to advantage, both in reasoning about the F-Net and in implementing an efficient scheduler for

the F-Net.

To facilitate reusing a single operation for multiple instructions, we decompose an instruction

specification into its operation and its binding as follows:

Operation

An operation is an instruction (together with its signature) which has had its m-variable refer-

ences replaced by formal parameters calledarguments, and its control state references (in

orphan statements) replaced by formal parameters calledtransitions. (Each transition will in

some sense belong to one of the arguments.)

Binding

A binding is a means of creating an instruction from an operation by providing an actual-to-

formal mapping. For each argument, the binding consists of three parts: (1) anargument bind-

ing, which specifies the actual m-variable to be used for the argument; (2) atransition binding,

which specifies the actual elements of the control domain of that m-variable to use for the transi-

tions of the argument; and (3) afiring constraint, which names the element of the control domain

which corresponds to this instruction.

41

3.3.5. Final Version of Sample Problem

Now for the final version of the sample problem. It does not differ significantly from the previ-

ous version. The graphical version was presented in Figure 3.3.

Variables
int i (uninit inrange outrange);
int hold1 (empty full);
int hold2 (empty full);
int sum (uninit valid);
float ans (empty full);

Ops
init [out int to0 (init)

out int to51 (init)]

to51 = 51;
<init to51>;
to0 = 0;
<init to0>;
endop

part [inout int n (takelast take1)
out int n_sqd (put)]

int temp;

n = n - 1;
temp = n;
if (n == 1)

<takelast n>;
else

<take1 n>;
n_sqd = temp * temp;
<put n_sqd>;
endop

red [in int n (take)
inout int add_n (inc)]

add_n = add_n + n;
<take n>;
<inc add_n>;
endop

fin [nodata snsr1 (sense)
nodata snsr2 (sense)
nodata snsr3 (sense)

42

in int n (take)
out float sqrt_n (put)]

float temp;

<sense snsr1>;
<sense snsr2>;
<sense snsr3>;
temp = n;
<take n>;
sqrt_n = sqrt(temp);
<put sqrt_n>;
endop

Instrs
init [to51 : uninit i (init : inrange)

to0 : uninit sum (init : valid)]
part [n : inrange i (takelast : outrange,

take1 : inrange)
n_sqd : empty hold1 (put : full)]

red [n : full hold1 (take : empty)
add_n : valid sum (inc : valid)]

part [n : inrange i (takelast : outrange,
take1 : inrange)

n_sqd : empty hold2 (put : full)]
red [n : full hold2 (take : empty)

add_n : valid sum (inc : valid)]
fin [snsr1 : outrange i (sense : outrange)

snsr2 : empty hold1 (sense : empty)
snsr3 : empty hold2 (sense : empty)
n : valid sum (take : valid)
sqrt_n : empty ans (put : full)]

The F-Net is now presented in three parts: M-variable declarations, operation declarations, and

instruction declarations.

The operations resemble the instructions in the previous example. Each is now preceded by its

signature for each argument, which lists the data usage and type, the argument name, and the list of

transition names. (Usagesin and inout signify read usage,out and inout signify write usage,

nodata signifies neither read nor write usage.) The syntax of the

orphan x as y

43

has been changed to

<y x>

wherey is now a transition andx is now an argument. Note that the arguments are nouns, the transi-

tions verbs.

The instructions now list the operation followed by the argument bindings (in brackets). The

binding for each argument consists of the name of the argument, the m-variable and control state to

which it is bound (i.e. the argument binding and firing constraint), and the transition bindings in paren-

theses.

It should be noted that although the sample problem adequately demonstrates the concepts, its

small size does not provide a good justification of their utility.

3.4. Final Notes

The restriction that the elements of the control domain of an m-variable must be independent is

not a restriction because of the functional nature of operations. Instead of using two different elements

of a control domain as a firing constraint for an instruction, two different instructions representing the

same operation can be used, each having all of the same bindings except that each uses only one of the

elements of the control domain as its firing constraint. Since the fact that the two instructions exhibit

the same behavior is maintained within the model (by virtue of their having the same operation), no

information is lost in this reconstruction. As mentioned earlier, this restriction reduces overhead by

simplifying the locking protocol for each instruction required to avoid deadlock.

In addition to the static representation of an F-Net shown in Figure 3.3, dynamic information

relating to execution semantics can also be shown. By highlighting the side of the m-variable corre-

sponding to the m-variable’s control state (with no side highlighted if the control state is), the execu-

tion rules can be stated as follows: an instruction can fire (i.e. execute) when it is connected only to

44

highlighted m-variable sides. Execution of an instruction consists of evaluating the firing function cor-

responding to its operation, using the data states corresponding to its "read" m-variables (i.e. those with

arrows toward the instruction circle) as arguments.

45

CHAPTER 4

Axiomatic Semantics and Formal Results

4.1. Introduction

Previous chapters have attempted to give a "feel" for the form (i.e. syntax) and behavior (i.e.

semantics) of an F-Net, but formal reasoning requires more. This chapter begins by restating this syn-

tax and semantics using the mathematical language of sets and functions.

Earlier, we defined a non-deterministic algorithm as one which describes a set of computations,

and a computation as a functional mapping from input to output. We also stated that a reasonable rep-

resentation for a parallel computation is a partial order of operations. In this section, we describe the

execution of an F-Net as an Execution Graph. The set of Execution Graphs achievable by any particu-

lar F-Net is defined by a set of constraints in the form of axioms. These axioms are followed by theo-

rems which show that Execution Graphs are indeed partial orderings and computations.

The constructs within an F-Net which introduce non-determinacy are then identified. With this

in mind, a choice log is defined which captures the non-deterministic choices made during a computa-

tion. We then prove that such a choice log, together with the F-Net and its input, completely character-

izes a computation. This is valuable information, since a choice log can be created during an execution

with very little space or time overhead, and can be used to re-execute an F-Net, perhaps within a

debugger, with the same results.

The notation used early in this chapter is shown in Table 4.1. The final entry may require further

explanation. As a tuple is defined, its elements (fields) are named. Later reference to an element of a

tuple may require identifying its parent. Since the use of subscripting for this purpose becomes

46

Notation Meaning

A, B, . . . Z, Σ Sets of various kinds, often of tuples

a, b, . . . , z Scalars or tuples

α , β ,γ ,δ , . . . ,ζ Functions

IN The set of natural numbers

IP(L) The Power set ofL
IZ The set of integers

[n, m] {i ∈IZ|n ≤ i ≤ m}
S The setS augmented with a bottom

element to create a flat domain.

x.w Field w of tuplex
Table 4.1. Notation

confusing when tuples are heavily nested, as they are here, the alternate notation shown is used. It is

intended to be reminiscent of record selection notation in theCcomputer language.

4.2. Syntax

Before presenting the formal definition of an F-Net in purely mathematical terms, we will first

provide an outline in English. An F-Net of orderp with alphabetΣ is a set of variablesV , operations

O, and instructions (which use those operations)I .

• A variable is a repository fordata state, a data value being passed from one computation (i.e.

instruction execution) to the next, andcontrol state, an indicator of the set of instructions which

can next access the variable. The data state of a variable will be drawn from itsdata domainand

the control state will be drawn from itscontrol domain. To avoid the complexities of type mis-

matches within the abstract model, all variables will have the same data domain,Σ, and the same

control domain,[1, p] , where can be taken to represents the absence of control state.

• Operations denote atomic, deterministic computations. An operation possessesargumentswhich

formally represent variables and each argument possessestransitionswhich formally represent

some members of that variable’s control domain. An argument is classified as being a read

47

(written) argument, or having read (write) usage, if its data state4 is ever used in (produced as a

result of) the execution of the operation. A single argument can be read, written, both, or neither.

The computation performed by an operation is described by afiring function, φ , which function-

ally maps the data state of its read arguments to new data state for its write arguments and transi-

tions for all of its arguments. For any argument with write usage or multiple transitions, one

possible transition for that argument is , which can be interpreted as the absence of a transition.

• Instructions are instantiations of operations. In addition to specifying the operation to be instan-

tiated, the instruction contains anargument binding, β , which associates each argument of the

operation with variables of the F-Net, and atransition binding, δ , which associates the transi-

tions for each argument and the control domain of the corresponding variable. An additionalfir-

ing constraint, γ , denotes the control state which each argument must have in order for the

instruction tofire (i.e. execute, performing the mapping specified by its operation).

An F-Netof orderp∈IN is a 4-tuplef = \
/Σ,V,O, I /

\
where

Σ is theData Alphabet

V is the set ofVariables

O is the set ofOperations, o∈O = \
/a, R,W,τ ,φ /

\
where

a∈IN is theArity (i.e. # of arguments)

R⊆[1, a] is the set ofRead Arguments

W⊆[1, a] is the set ofWritten Arguments

τ : [1, a] → [1, p] is theTr ansition Signature(i.e. # of transitions/arg)

φ is theFiring Function

φ : Σ|R| → Σ|W| × T1 × . . . × Ta

4When we refer to the data state or control state of an argument, we are actually referring to that of the variable which the
argument represents.

48

whereTk ≡




{1}

[1,τ (k)]

if τ (k) = 1 andk∈/ W

otherwise

I is the set ofInstructions, i ∈I = \
/o, β ,γ ,δ /

\
where

o∈O is theOpcode2

β : [1, o.a]
1−1
→ V is theArgument Binding

γ : [1, o.a] → [1, p] is theFiring Constraint

δ : [1, o.a] → ([1, p]
strict

1−1
→ [1, p]) is theTr ansition Binding.

(Notes: δ (n) needs only to be defined over[1,τ (n)])

Example: The sample F-Net from the last chapter can be represented formally as an order 4 (or

greater) F-Net,fexample1 = \
/Σ,V,O, I /

\
, where

V = {i, hold1, hold2,sum, ans}

O = {oinit , opart, ored, ofin} where

oinit ≡ \
/2,{} , {1, 2}, {(1, 1)},φ init /

\
whereφ init () ≡ (0, 51, 1, 1)

opart ≡ \
/2,{1}, {1, 2}, {(1, 2), (2, 1)},φ part /

\

whereφ part(n) ≡ (n − 1, (n − 1)2,




1

2

if n = 2

otherwise




, 1)

ored ≡ \
/2,{1, 2}, {2}, {(1, 1), (2, 1)},φ red /

\

whereφ red(n, m) ≡ (n + m, 1, 1)

ofin ≡ \
/5,{4}, {5}, {(1, 1), (2, 1), (3, 1), (4, 1), (5, 1)},φ fin /

\

whereφ fin(n) = (√ n, 1, 1, 1, 1, 1)

I = {init , part1, part2, red1, red2, fin } where

2 In fact, a cleaner but more verbose definition would makeO a sequence rather than a set, and the opcode an index into
it. The existing definition will work under the assumption that firing functions are actually representations of functions.

49

init ≡ \
/oinit , {(1,sum), (2,i)},

{(1, 1), (2, 1)}, {(1,{(1, 2)}), (2,{(1, 2)})} /
\

part1 ≡ \
/opar, {(1, i), (2,hold1)},

{(1, 2), (2, 1)}, {(1,{(1, 3), (2, 2)}), (2,{(1, 2)})} /
\

part2 ≡ \
/opar, {(1, i), (2,hold2)},

{(1, 2), (2, 1)}, {(1,{(1, 3), (2, 2)}), (2,{(1, 2)})} /
\

red1 ≡ \
/ored, {(1,hold1), (2,sum)},

{(1, 2), (2, 2)}, {(1,{(1,{(1, 1)}), (2,{(1, 2)})} /
\

red2 ≡ \
/ored, {(1,hold2), (2,sum)},

{(1, 2), (2, 2)}, {(1,{(1,{(1, 1)}), (2,{(1, 2)})} /
\

fin ≡ \
/ofin, {(1, i), (2,hold1), (3,hold2), (4,sum), (5,ans)},

{(1, 3), (2, 1), (3, 1), (4, 2), (5, 1)},

{(1,{(1, 3)}), (2,{(1, 1)}), (3,{(1, 1)}), (4,{(1, 2)}), (5,{(1, 2)})} /
\

4.3. Semantics

An F-Net computation will be described as a partial ordering, called an Execution Graph, con-

taining two kinds of nodes: Event (E) nodes, which represent instruction firings (i.e. executions), and

Variable Content (C) nodes, which represent the control and data state associated with a variable

between instruction accesses. Arcs connect each C node to the E node representing the instruction fir-

ing which accesses the variable in that state, and connect each E node to a set of C nodes representing

those same variables in their new (possibly un-modified) state. Since each C node will have at most

one in-arc and one out-arc, the graph obtained by deleting all C nodes will also be a partial ordering.

An execution graph illustrates how each instruction execution maps the old data states of each of its

associated variables to new data and control states, or alternately, how each variable provides a means

50

of communication and control between instructions, and is similar to the unrolling of a Petri net.

The set of possible execution graphs which correspond to a particular F-Net is presented by char-

acterizing its members in two stages. First, the general form of an execution graph is given, then a set

of axioms is provided which constrains the elements to execution graphs corresponding to the particu-

lar F-Net.

4.3.1. Form of an Execution Graph

Define an execution graphfor an F-Net f = \
/Σ,V,O, I /

\
with input ι: f .V → f .Σ as a 6-tuple

x f ,ι = \
/E,C, B, A, σ̂ ,σ /

\
where

E is a set offiring events

C is a set ofvariable contents

B⊂C × E is a set ofbefore arcs

A⊂E × C is a set ofafter arcs

σ̂ : E → f .I is aninstruction name labeling

σ : C → f .V is avariable name labeling

such that functions

σ̇ : C → [1, p] is acontrol state labeling

σ̈ : C → f .Σ called adata state labeling

exist, and Semantic Axioms 1 through 6, described below, hold.

An execution is represented graphically with verticesE ∪C and edgesB∪ A. The vertices are

labeled according to the values of theirσ functions as in figure 4.1:

51

E NodeC Node

σ σ̂
σ̈σ̇

Figure 4.1 Node Labels for Execution Graph

Figure 4.2 shows parts of a possible execution graph for the sample F-Net.

4.3.2. Axioms Constraining Execution Graphs

In addition to Table 4.2, the following shorthand will be used in this section:

Define the initial elements of C,C0, as those elements which precede all elements of C having the

same name, i.e.

C0 ≡ {c0∈C|c∈C // \\ c = c0 ==>c0∼>c }

Axiom 1: Initial Conditions

Each variable has an initial C node named for it, which has a control state labeling of1 and a

data state labeling ofι.

∀v∈V∃c0∈C0. c0 = v // \\ ċ0 = 1 // \\ c̈0 = ι(v)

Axiom 2: Atomicity

A C node has at most one predecessor and one successor, signifying that it can be the result of at

most one instruction execution and can be sensed by at most one instruction execution.

∀c∈C. |c * | ≤ 1 // \\ | * c| ≤ 1

Axiom 3: Firing

Structure: An E node for an instruction has predecessor and successor C nodes which corre-

spond exactly to the variables to which the arguments of the instruction are bound.

∀e∈E. * eσ←→ê.β ([1, ê.o.a])

// \\ e * σ←→ê.β ([1, ê.o.a])

52

ans

41

9

32

11 11

1

2 1

ans

finish

i

hold1

sum

hold2
red2 red2

red1

part2

part2

hold2

sumsumsumsum

hold2hold2hold2hold2

hold1hold1

iii

1312 2 3

2 2 242924 42925 42925

1 92 9

2 41 16

4291522 42911

(b) Possible ending

2 207.181

21 0 820722 590124012

230624012401 12 2

51 50 492 221

25002

1

1

i

hold1

hold2

sum

i i i

hold1

hold2 hold2

sum sum

init

part1

part2

red2

red1

part2

sum

hold2

hold1

i

hold2

sum

red2

1

1

2

2500

48

2306

(a) Possible beginning

Figure 4.2 One Execution Graph for the Sample F-Net

Notation Description Meaning

ê Instruction Label ˆσ (e)
c Variable label σ (c)
ċ Control state ˙σ (c)
c̈ Data state ¨σ (c)

α (L) Image of setL {α (l). l ∈L}
α ((yj)) Image of Seq. (zj) wherezj = α (yj)
X m←→Y mbijectively maps X

to Y
m(X) = Y // \\ m−1(Y) = X where
m: X′ → Y′, X⊆X′, Y⊆Y′

x * Successors {y|(x, y)∈B∪ A}
* y Predecessors {x|(x, y)∈B∪ A}

x∼>z Precedes (∃y. (x, y)∈B∪ A // \\ y∼>z) \\ // x = z
wherex, z∈C ∪ E

L> Set L as ascending
sequence

(l j) wherel j ∈L // \\ j < k ==>l j < l k

L∼> SetL ordered by∼>
x|— y x determinesy The axioms andx uniquely determiney

Table 4.2. Additional Notation

53

Condition: The control states for the predecessors of an E node must correspond exactly to the

firing constraint of the instruction represented by the E node.

∀e∈E. c∈ * e==>ċ = ê.γ (ê.β −1(c))

Result: The firing function dictates the new data state of each of the instruction’s written argu-

ments and a transition for each of the instruction’s arguments, based only on the old data state of

the read arguments. The control state of each new variable content node is obtained by mapping

its transition through its corresponding transition binding.

∀e∈E. ê.o.φ (r̈1, r̈2, . . .) = (ẅ1, ẅ2, . . . , t1, t2, . . . , tê.o.a) // \\

(∀k∈[1, ê.o.a]. ġk = ê.δ (k)(tk))

where rj ∈ * e, wj , gj ∈e*, (r j) = ê.β (ê.o.R<),

(gj) = ê.β ([1, ê.o.a]<),

(wj) = ê.β (ê.o.W<)

Note: The sequences(r j), (wj), and (gj) defined in thewhereclause are the predecessor

nodes corresponding to read arguments, the successor nodes corresponding to write arguments,

and all of the successor nodes, respectively. Axiom 3-structure ensures that there is exactly one

sequence(cj) of predecessor (or successor) nodes such that(cj) = ê.β ([1, ê.o.a]<). The

three sequences in thewhereclause are subsequences of such a sequence, and so are well

defined.

Axiom 4: Non-interference

If a variable is not a write variable for an instruction, then an execution of that instruction will

not affect the data state of the variable.

∀e∈E, m∈[1, ê.o.a]\ ̂e.o.W.

c∈ * e // \\ c′∈e * // \\ c = c′ = ê.β (m) ==> c̈ = c̈′

54

Axiom 5: Liveness

If an instruction can fire, it (or another instruction connected to some of its variables) must fire.

(∃i ∈I ,C′⊆C. C′ σ←→i .β ([1, i .o.a]) // \\ (∀c∈C′. ċ = i .γ (i .β −1(c))))

==> ∪ {c * |c∈C′} ≠ ∅

Axiom 6: Time Consistency

The execution graph will be acyclic:

(x, y∈C ∪ E // \\ x ≠ y // \\ x∼>y) ==>not(y∼>x)

In general, several execution graphs will satisfy the axioms for a particular F-Net and input.

4.4. Execution Graphs as Partial Orders

The theorems in this section will demonstrate that an execution graph is a partial ordering, that

each variable is represented by exactly one bottom element within the partial ordering, and that theC

nodes representing any variable are totally ordered within the partial order.

Theorem 1:

∼> partially orders the elements ofE ∪C.

Proof of Theorem 1:

Reflexivity and transitivity are obvious from the definition of∼> . Axiom 6 gives asymmetry.•

Theorem 2:

There is exactly one element ofC0 representing each variable in the F-Net—i.e.

C0
σ←→V

Proof of Theorem 2:

Axiom 1 givesC0 = V . Let ∃c, c′∈C0. c = c′. By definition ofC0, c∼>c′ // \\ c′∼>c, but by

Axiom 6,∼> is asymmetric. Soc = c′ ==>σ : C0 → V is 1-1.•

55

DefineCv ≡ {c′∈C. c = v}.

i.e.Cv is the set of allC nodes labeledv.

Defineage: C → IN asage(c) ≡ |{c′∈Cc. c′∼>c }|

i.e. age(c) is the number ofC nodes with the same name precedingc (includingc itself).

Theorem 3:

All variable content nodes with a given name labeling are totally ordered by∼> (i.e. form a

chain in the partial ordering):

∀v∈V, c, c′∈Cv. not(c∼>c′) ==>c′∼>c

Proof of Theorem 3:

The proof will consist of showing that

Cv
age←→ [1, |Cv|]

from which the proof of the theorem is obvious.

DefineB(c) ≡ {c′∈Cc. c′ ≠ c // \\ c′∼>c // \\ (∀c′′ ∈Cc. c′′∼>c ==>c′′∼>c′)}.

That is,B(c) is the set of "closest" members ofCc which precedec, so

age(c) = 1 +
c′∈B(c)

Σ age(c′).

Let c′, c′′ ∈B(c). Then from definition ofB(c) and Axiom 2,

c′∼>c ==>|c′ * | ≠ 0==>|c′ * | = 1,

and the same is true forc′′. Let c′* = {e′}, c′′* = {e′′}. |e′ * ∩Cc| = |e′′ * ∩Cc| = 1

from Axiom 3-structure. In each case, that element must bec. From Axiom 2,e′ = e′′, and

since| * e′ ∩Cc| = 1, c′ = c′′. Thus,B(c) = {c′}, andage(c′) = age(c) − 1, so in gen-

eral,

∀v∈V, n > 1. |{c∈Cv. age(c) = n}| ≤ |{c∈Cv. age(c) = n − 1}|.

The proof is finished by observing that

|{c∈Cv. age(c) = 1}| = 1

56

by Axiom 1 and definition ofC0. •

4.5. Execution Graphs as Computations

Definec∼> ≡ {c′∈C. c′∼>c // \\ c′ ≠ c}

Theorem 4:

The control state and data state labelings (functionsσ̇ andσ̈) for an execution graph are unique:

i.e.

|— σ̇ , σ̈

Proof of Theorem 4:

Induction over partial orderC∼> .

Base Case: c∈C0|— ċ , c̈

From axiom 1,̇c = 1 // \\ c̈ = ι(c)

Inductive Case:∀c∈C. ((c′∈c∼> |— c̈ ′)|— ċ , c̈).

c′∈c∼> ==>| * c| = 1 from axiom 2. Let *c = {e}, and let(r i) be the sequence ofe’s

predecessors corresponding to its read arguments, i.e.

(r i) = ê.β (ê.o.R<) wherer i ∈ * e.

By construction,∀i . r i ∈c∼> , so by the inductive assumption,|— r̈ i . Let

(ni) ≡ ê.o.φ (r̈1, r̈2, . . . , r̈ l) (i.e. the result vector from the instruction)

andm ≡ ê.β −1(c) (i.e. the argument represented byc).

Axioms 3-result and 4 dictate

ċ = ê.γ (m)(nm+|ê.o.W|).

and

c̈ =




nk

c̈′′
if m = (ê.o.W<)k

if m∈/ ê.o.W

wherec′′ is the member of*esuch thatc = c′′. •

57

The fact thatσ̇ andσ̈ are completely determined by an execution graph explains why they are

not taken to be part of the definition of the graph, but it also illustrates that eachC node represents the

results of a function evaluation, perhaps on its way to be used as an argument to another function. To

get a better feeling for the function evaluation taking place, theσ̈ labeling can be interpreted slightly

differently, as the function evaluation represented by the node rather than the result of that evaluation,

simply by leaving theφ functions unreduced while following the procedure used in the proof of Theo-

rem 4.

Define the output of a execution graphx f ,ι relative to variablev∈V and control staten∈[1, p],

denotedoutput(x f ,ι , v, n), as the sequence

σ̈ ({c∈x f ,ι .Cs. ċ = n}∼>)

(Corollary 3.1 and Theorem 4 prove that this is well defined.)

Definean F-Net as beingdeterminatewith respect to variablev∈V and control staten∈[1, p], if and

only if

∀ι. output(x f ,ι , v, n) = output(x′ f ,ι , v, n)

(i.e. if the output sequence for control staten of variablev is dependent only on the input for a given

F-Net).

4.6. Tracing an Execution

How much (or little) information is required, in addition to the F-Net itself, to completely deter-

mine an execution graph for that F-Net (up to an isomorphism)? This question is important for debug-

ging non-deterministic programs, for it determines the amount of data that must be logged during an

execution in order to reconstruct "what happened" during that execution.

Define, for i , i ′∈I ,

58

shared(i , i ′) ≡ i .β ([1, i .o.a]) ∩ i ′.β ([1, i ′.o.a])

(i.e. the set of variables to which bothi andi ′ are bound).

Definethecontendsrelation<> as

i <> i ′ ≡ i ≠ i ′ // \\ shared(i , i ′) ≠ ∅

// \\ ∀v∈shared(i , i ′). i .b(i .β −1(v)) = i ′.b(i ′.β −1(v))}

i.e. two instructions contend whenever they hav e at least one variable in common, and for all variables

which they hav e in common, their firing is constrained to the same control state of that variable.

Put another way, two instructions contend if the states of the variables which they share do not

dictate which should execute next. Since they do share variables, theE nodes representing their

executions will be related by∼> , so the order in which they execute will affect the topology of the

execution graph. This suggests (and the remainder of this chapter will prove) that contending instruc-

tions are the only source of non-determinism in an F-Net. We now addinstrumentationto an F-Net to

capture the order in which contending instructions fire, and thus the non-deterministic choices made

during an F-Net execution. This is accomplished by coloring the instructions of the F-Net such that

contending instructions always have differing colors, then recording the color of each contending

instruction every time it fires. This log of colors does not need to be global—it is only necessary that

any two instructions which contend use a common log. Since contending instructions already have

some common variables by definition, these variables provide a handy (and local) site to store the logs.

It is not necessary to assign a log to each shared variable, but to at least one variable shared by the con-

tending instructions.

DefineanInstrumented F-Netas a 6-tuple
∼
f = \

/Σ,V,O, I , color, logsel/
\
where

f = \
/Σ,V,O, I /

\
is an F-Net

color: I → IN is anInstruction Coloring

59

logsel: I → IP(V) is aLog Selector

such that

(i <> i ′) ==>color(i) ≠ color(i ′) // \\ logsel(i) ∩ logsel(i ′) ∩ shared(i , i ′) ≠ ∅

not(i <> i ′) ==>logsel(i) = ∅

i.e. for any two instructions which contend, the colors assigned to the instructions are different, and at

least one of their shared variables belongs to the log selector of each instruction.

Example:

To better convey the points of this section, we now leave the previous example behind and refer

to the F-Net shown in Figure 4.3. It will not be necessary to detail the firing functions for the

individual instructions. In this F-net,B <> C and B <> D are the only instructions which

contend. One possible instrumentation for that F-Net is

color ≡ {(A, 0), (B, 0), (C, 1), (D, 1), (F , 0)} and

logsel≡ {(A, {}), (B, {L , M}), (C, {M }), (D, {L}), (F , {})}

1

2 1 2
3 2

1

2

1

3

21

2

1
1

2

3

21

3

4

L

TP

M

DACB

F

Figure 4.3 A New Sample F-Net

60

Definea Tr aced Execution Graphof instrumented F-Net
∼
f = \

/Σ,V,O, I , color, logsel/
\
with input

ι as a 7-tuplẽx ∼
f ,ι

= \
/E,C, B, A, σ̂ ,σ , logent/

\
where

x f ,ι = \
/E,C, B, A, σ̂ ,σ /

\
is an execution graph for F-Netf = \

/Σ,V,O, I /
\
with inputι

logent: C → IN is theLog Entry

such that

∀e∈E∀c∈ * e. c∈logsel(ê) ==>logent(c) = color(ê)

i.e. each time a contending instruction fires, the color of the instruction is logged to all of its predeces-

sor nodes which correspond to its log selectors.

DefinetheLogof traced execution graph̃x ∼
f ,ι

for variablev∈V , denotedlog(x̃ ∼
f ,ι

, v), as

logent({c∈Cv. c* = {e} // \\ v∈logsel(ê)}∼>)

where

∼
f = \

/Σ,V,O, I , color, logsel/
\

x̃ ∼
f ,ι

= \
/E,C, B, A, σ̂ ,σ , logent/

\

i.e. the log for a variable is the sequence of log entries assigned to theC nodes named for the variable,

omitting those that do not immediately precede contending instructions.

Example:

If the execution graph in Figure 4.4 is a traced execution graph of the instrumented F-Net given

in the last example, then

log(x̃ ∼
f ,ι

, L) = 0, 1

log(x̃ ∼
f ,ι

, M) = 0

All other logs are empty •

61

D

A

B

F

LLL

MMM

T

PPP

T

M

L

Figure 4.4. An Execution Graph for F-Net in Figure 4.3

Minimizing the range ofcolor will therefore minimize the size (i.e. number of bits) for a log

entry, and minimizing the range oflogselwill minimize the number of logs to which each log entry is

recorded.

4.7. Execution Graphs with Identical Logs are Isomorphic

Definition: Prefix subgraph

Let x be an execution graph.y is aprefix subgraphof x if y is a subgraph ofx, if every prede-

cessor inx of an element ofy is also iny (as is the arc between them), and if every successor to

anE node iny is also iny—i.e. the following conditions hold:

(1) c∈y.C ==>c∈x.C

(2) e∈y.E ==>e∈x.E

(3) (c∈y.C // \\ (e, c)∈x.A)<==>(e∈y.E // \\ (e, c)∈y.A)

(4) (e∈y.E // \\ (c, e)∈x.B)<==>(c∈y.C // \\ (c, e)∈y.B)

(5) (e∈y.E // \\ (e, c)∈x.A==>c∈y.C

Note that a prefix subgraph is often not a legal execution graph because it does not adhere to Axiom

5-liveness.

62

Definition: Graph Isomorphism

Execution graphs (or prefix subgraphs)x and x′ are isomorphic (denotedx=∼∼ x′) iff there exist

bijectionsc̃: x.C←→x′.C andẽ: x.E←→x′.E such that

(c, e)∈x.B<==>(c̃(c), ẽ(e))∈x′.B

(e, c)∈x.A<==>(ẽ(e), c̃(c))∈x′.A

σ (c) = σ (c̃(c))

σ̂ (e) = σ̂ (ẽ(e))

From the proof of Theorem 4, it also follows that

σ̇ (c) = σ̇ (c̃(c))

σ̈ (c) = σ̈ (c̃(c))

The rest of the chapter will be devoted to proving the following theorem:

Theorem 5:

If x̃ ∼
f ,ι

= \
/E,C, B, A, σ̂ ,σ , logent/

\
and x̃′ ∼

f ,ι
= \

/E′,C′, B′, A′, σ̂ ′,σ ′, logent′ /
\

are

traced execution graphs of instrumented F-Net
∼
f = \

/Σ,V,O, I , color, logsel/
\

with input ι

such that ∀s∈S. log(x̃ ∼
f ,ι

, v) = log(x̃′ ∼
f ,ι

, v) then execution graphs

x f ,ι = \
/E,C, B, A, σ̂ ,σ /

\
and x′ f ,ι = \

/E′,C′, B′, A′, σ̂ ′,σ ′ /
\

of f = \
/Σ,V,O, I /

\
are iso-

morphic.

That is, in addition to the original input and instrumented F-Net, only the log associated with each vari-

able is needed to uniquely determine the execution graph. The proof will be presented "top-down" to

give the reader a better bearing on where it is all leading, and is based on an induction over the partial

ordering represented by the execution graphs.

Proof of Theorem 5

63

Base case:

The prefix subgraph consisting only of theC0 elements ofx is isomorphic to the prefix sub-

graph consisting only of theC0 elements ofx′. This follows immediately from the definition of

C0, Axiom 1, and the definition of a prefix subgraph.

Inductive step:

Suppose that there is a prefix subgraph ofx f ,ι (call it y) which is isomorphic to a prefix sub-

graph ofx′ f ,ι (call it y′). If either execution graph (sayx, WLOG) has an element not in its

prefix subgraph (y), then pick a least such element by partial ordering∼> , and call itex. (It

must be a member ofE from the definition of prefix subgraph.) We will show that the other

execution graph (x′) has an elementex′ not in its prefix subgraph (y′) such that addingex, its

before arcs, after arcs, and successors toy is a prefix subgraph which is isomorphic to that

obtained by addingex′, its before arcs, after arcs, and successors toy′.

The result of this induction is that given any two traced execution graphs with identical logs for all

variables, all of both graphs can be pulled intoy and y′, so the execution graphs themselves must be

isomorphic.

Proof of the inductive step:

Constructy, y′, andex as indicated in the above proof statement.

Define

Px ≡ *ex

All members ofPx must be members ofy, so by the inductive assumption, there exists a setPx′ in y′

such that

Px′=∼∼Px

64

Consider the successors ofPx′:

E′x′ ≡
cx′ ∈Px′
∪ cx′ *

E′x′ cannot be empty, since we know from execution graphx that there exists an instruction (êx)

which can fire based on the control states of the elements ofPx, so by Axiom 5-Liveness and isomor-

phism, one of the elements ofPx′ must have a successor.

Pick a least element ofE′x′ and call itex′. In the next section, Lemma 5.5 will show thatêx′ = êx,

and from Lemma 5.2 it will follow that*ex′=∼∼ * ex, so E′ = {ex′}. Axiom 3-Structure then gives

thatex′ * andex * have the same names, control states, and data states.

4.8. Toward Proving êx = êx′

Lemma 5.1: shared(êx, êx′) ≠ ∅

Proof:

Px=∼∼Px′ (By construction)

==>σ (Px) = σ (Px′) (Mapping over like sets)

*ex = Px (By construction)

==>σ (*ex) = σ (Px) (Mapping over like sets)

*ex′ ∩ Px′ ≠ ∅ (By construction)

==>σ (*ex′) ∩σ (Px′) ≠ ∅

==>σ (*ex′) ∩σ (*ex) ≠ ∅ (Substitution)

==>êx
.β ([1, êx

.o.a]) ∩ êx′.β ([1, êx′.o.a]) ≠ ∅ (Axiom 3-struct)

==>shared(êx, êx′) ≠ ∅ (Def. of shared)

Lemma 5.2:cx ∈ * ex // \\ cx′ ∈ * ex′ // \\ cx = cx′ ==>cx=∼∼cx′

Proof:

Let cx ∈ * ex andc′x′ ∈ * ex′ such thatcx = c′x′. Sincecx ∈Px, there must be acx′ ∈Px′

65

such thatcx=∼∼cx′, and thereforecx = cx′. We will prove that cx′ = c′x′, thus proving the

Lemma.

Suppose thatc′x′ ≠ cx′.

From Theorem 3, all elements ofC with the same name form a chain in the partial order, so

either (a) c′x′∼>c x′. or (b) cx′∼>c′x′

(a) c′x′ ∈ * ex′, so by Axiom 2-Atomicity,c′x′* = {ex′}. From this, the definition of∼> , and

the fact thatc′x′∼>c x′, we getex′∼>c x′. But cx′ is a member ofy′, so by the definition of

prefix subgraph,ex′ must also be.==><== .

(b) Let cx′ = {e′x′}. (It must have exactly one element, from Axiom 2-Atomicity and the fact

that it precedes other elements.) But fromcx′∼>c′x′ and the construction ofc′x′, it follows

that cx′∼>e′x′∼>c′x′∼>ex′. Thus,ex′ is not a least element having a predecessor inPx′.

==><== .

Soc′x′ = cx′, and thereforec′x′=∼∼cx. •

Lemma 5.3

∀v∈shared(êx, êx′)∃cx ∈ * ex, cx′ ∈ * ex′. cx = cx′ = v

Proof:

v∈shared(êx, êx′) ==>v∈êx
.β ([1, êx

.o.a]) ∩ êx′.β ([1, êx′.o.a]) (Def. of shared)

==>∃cx ∈ * ex, cx′ ∈ * ex′. cx = cx′ = v (Axiom 3-structure)•

Lemma 5.4

êx <> êx′

Proof of Lemma 5.4

cx ∈ * ex // \\ cx′ ∈ex′ // \\ cx = cx′ ==>cx=∼∼cx′ (Lemma 5.2)

∀v∈shared(êx, êx′)∃cx ∈ * ex, cx′ ∈ * ex′. cx = cx′ = v (Lemma 5.3)

==>∀v∈shared(êx, êx′)∃cx′ ∈ * ex′, cx ∈ * ex. cx′ = cx = s // \\ ċx′ = ċx (Substitution)

66

∀e∈E. c∈ * e==>ċ = ê.b(ê.β −1(c)) (Axiom 3-cond)

==>∀v∈shared(êx, êx′). êx
.b(êx

.β −1(v)) = êx′.b(êx′ β
−1(v)) (Substitution)

shared(êx, êx′) ≠ ∅ (Lemma 5.1)

==>êx <> êx′ (Def of <>)•

Lemma 5.5

êx = êx′

Proof:

Suppose false: i.e.

êx ≠ êx′

After adding the results of Lemma 5.4, the definition of an instrumented F-Net gives

logsel(êx) ∩ logsel(êx′) ∩ shared(êx, êx′) ≠ ∅.

Let v be a member of that set. Then it must be a member ofshared(êx, êx′), so by lemma 5.3,

∃cx ∈ * ex, cx′ ∈ * ex′. cx = cx′ = v

From this, and the fact thatv∈logsel(êx′) ∩ logsel(êx), and the definition of a traced

execution graph,

logent(cx) = color(êx)

logent(cx′) = color(êx′)

Sincecx andcx′ are corresponding elements from isomorphic prefix subgraphs, and since the

logs for the execution graphs are identical,

logent(cx′) = logent(cx)

so

color(êx′) = color(êx)

But the definition of an instrumented F-Net expressly requires that

êx′ ≠ êx // \\ êx <> êx′ ==>color(êx′) ≠ color(êx)

67

Thus the contradiction, sôex′ = êx.•

4.9. Conclusions

The previous two sections showed that, in general, only a small amount of information needs to

be recorded during an execution to allow for the reconstruction of that execution, and that this informa-

tion only needs to be recorded for instructions which contend. In the example given, this consisted of

recording one bit of information whenever instructionsC or D fired, and two bits wheneverB fired.

In addition, the recording is always performed to an uncontested site, namely a variable which is

already accessed by the instruction performing the recording. It seems plausible that the space and

time overhead for this recording will be small enough in the general case that the benefit gained by

instrumenting every F-Net will not be negated by any significant loss in performance during its execu-

tion.

The fact that only the firings of contending instructions need to be recorded directly implies that

if an F-Net has no such instructions, all executions of that F-Net will be deterministic: i.e. given the

same input, all execution graphs will be isomorphic.

4.10. Final Note on the Effects of Order (Size of Control Domain)

An order-p F-Net is one in which each of its variables has a control domain of (at most)p ele-

ments (plus). Variables in an order-1 F-Net can therefore provide no means to control the order in

which instructions fire and thus no means to enforce communication between instructions. A leg al

execution for any order-1 F-Net could consist of a single instruction associated with each variable fir-

ing repeatedly forever (or until variables attain a control state of). Order-1 F-Nets are therefore

clearly of little use.

An F-Net of order 2 or higher can always be expressed as an F-Net of order 2 with the same

number of instructions by modeling eachn-control-state variable withlg(n) 2-control-state variables.

68

This providesn different ways of constraining the firing of the instruction. See Figure 4.5. By selec-

tively producing transitions to these variables, any of these instructions can arbitrarily determine the

next control state for each of the variables, thereby dictating which connectivity will be enabled next.

This is exactly the behavior required for ann-control-state variable.

"Non-volatility" is preserved by this transformation. If an instruction in a high-order F-Net has

non-volatile access to a variable, the instruction can always be modeled as performing a single transi-

tion to each of that variable’s representatives in the order-2 F-Net with no write usage to any of them.

If the high-order instruction does have write usage to the variable, or performs multiple transitions, it

must have write usage to, or perform multiple transitions to, at least one of the representative variables

in the order-2 F-Net.

Even though an order 2 F-Net can always be constructed to have the same behavior as a higher-

order F-Net, the amount of high-level information about that behavior is greater in the higher-order F-

Net.

Comparable Order 4 F-NetOrder 2 F-Net

11
10

01
00

10

10

D’C

D

B

A
A’

B’

C’

Figure 4.5. Comparable Order-4 and Order-2 F-Nets

69

(1) Two different instructions in a high-order F-Net which represent the same mapping from read

arguments to write arguments and which perform the same number of transition to each argu-

ment can use the same operation. After translating to an order-2 F-Net, it may not be possible

to use the same operation for both because the transitions performed by the operation may

depend on the encoding of the variable’s control domain.

(2) It is not possible to represent as many transition bindings in a low-order F-Net as in a higher-

order one. For example, in Figure 4.5, it is apparent that instructionD will only make transi-

tions to control states 01 or 10, enabling instructionsB or C, but this is not apparent at all in

the order-2 F-Net. The possible combinations of transitions have been hidden inside of the fir-

ing function ofD′.

Additional justification for having nets of order higher than 2 will become clear when the model is

extended to include hierarchy. For these reasons, low-order F-Nets will not be further considered in

this thesis, and the term "F-Net" will subsequently refer to an order infinity F-Net—i.e. one in which

the variables have as large of a control domain as needed. This is possible because control states to

which there are no transitions or bindings have no effect on the semantics and are not shown in the

graphical representation.

70

CHAPTER 5

Comparison with Other Models

Now that F-Nets have been formally defined, some comparisons can be made between F-Nets

and some of the other models mentioned in Chapter 2.

5.1. Unity

Unity programs are very similar to order 1 F-Nets3—i.e. F-Nets with a control domain capable

only of ensuring the atomicity of execution. Unity provides two extensions over these nets, however:

(1) a strong notion of fairness, ensuring that no instruction firing will be delayed for more than a finite

number of other instruction firings, and (2) an optional guard for each instruction which prevents it

from having an effect when not satisfied. Unity-like guards could be simulated in order-1 F-Nets by

including conditionals within operations and requiring arguments to have read usage whenever they

have write usage. This latter restriction is necessary because every firing would be required to produce

a new data state for these arguments, whether or not the simulated guard was satisfied.

On a more practical level, a Unity program, as presented by the authors, has relatively fine-

grained processes and ether. The ability to collect ether addresses into larger structures is important to

achieve the granularity in high-latency environments needed for portable parallel programs.

5.2. Petri Nets

An operation which has no arguments having read or write usage must have a firing function

which returns constant transitions. An F-Net containing only operations of this kind can be modeled

3 Recall that the order of an F-Net is the maximum size of the control domains for its variables.

71

directly as a Petri net.Each element (other than) of the control domain of each variable in the F-Net

becomes a place in the Petri Net, and each instruction becomes a Petri-Net transition. Each argument

in the F-Net becomes two arcs in the Petri Net—an input arc representing the firing constraint and an

output arc representing the transition binding. The initial marking for the Petri Net consists of one

token on each place which corresponds to an initial control state; see Figure 5.1.a.

To model F-Nets more generally requires that Petri Net semantics be extended. In addition to

the above translation (now with multiple output arcs for each argument, one for each transition

(b) With read-write usage

(a) No read-write usage

F_net Corresponding Petri Net

•

••

•

• •

•

•
w

r

r

r

rw

rw

rw
rw

w w

w

w

w

L

R

R

P
C

D

E

S

A

NM

BCB

A E

D

P

NM

L

S

Figure 5.1. F-Nets Modeled as Petri Nets

72

binding), the following additions are required (see Figure 5.1.b for an example):

(1) The input arcs to the transitions in the Petri Net are colored (with chalk) red, white, or both,

depending on whether the associated argument has read usage, write usage, or both. Arcs hav-

ing neither are left uncolored.

(2) Places are labeled for the variable which they represent.

(3) Each token is extended to carry a data value, and is labeled indelibly with the name of the vari-

able to which it belongs.

(4) When a transition fires, it takes one token from each input place. As it is taken, some of the

chalk from the arc will smudge onto the token. (If the arc has both red and white, both colors

will smudge.) Based only on the data associated with tokens which are smudged with red

chalk, the transition determines new data values for tokens smudged with white, then deter-

mines an output arc for all tokens. The output arc chosen must be connected to the appropriate

variable (i.e. that for which the token is labeled), and the transition may determine that it will

not replace the token at all if the token is smudged white or if there is more than one output

place corresponding to its variable.2 As a token is put on an output place, all smudges are

cleaned off the token. Note that unlike conventional Petri Nets, a token isnot added to each

output place, but to at most one output place corresponding to each m-variable.

Other extended versions of Petri Nets which include data transformations and timing of transi-

tions have been proposed by other researchers, primarily to simulate hardware systems. While the F-

Net model has intentionally avoided addressing timing constraints, we believe that it can address all

other aspects of these models.

2 This latter case represents the control state.

73

5.3. CCS

F-Nets and Milner’s CCS have a great deal of similarity. Both use, as a basis, finite state

machines. Events can occur only when the states of different machines occur in stated combinations.

These events are atomic, and when they occur, they cause (or allow) a transition to the state of each of

the machines involved.

The specifics of the models are different, however. In CCS, the events are communication,

where no data transformation takes place, while in F-Nets, the events are instruction firings, which do

transform data. In CCS, a state transition may involve a data transformation, and may be non-

deterministic, while in F-Nets, the state transition itself does not transform data, and is deterministic.

However, the state transition and data transformation in F-Nets depends on the event which causes the

transformation and the data which that event accesses (unlike CCS where the transformation depends

only upon the previous state of the machine plus non-determinism), and that event can be non-

deterministically chosen in some cases.

From these comparisons, it seems clear that an F-Net can be constructed with identical behavior

to any CCS program, by representing each CCS communication link with one or more F-Net instruc-

tions, as necessary to provide the required non-determinism. The possibility that some aspects CCS

and F-Net theories could be merged could provide fertile ground for future research.

5.4. Functional Models

A primary difference between F-Nets and traditional functional models is its lack of single-

assignment variables, and therefore lack of referential transparency in the general case. A limited

amount of referential transparency can be obtained within an F-Net by considering each m-variable to

be a set of functional variables, one for each element of the control domain, and ensuring that each

instruction with write usage makes a transition to a "new" (say, numerically higher) control state. But

any usable functional model must be able to create new contexts with new versions of single-

74

assignment variables to avoid using up the supply. These contexts are typically created for each itera-

tion of a loop, each invocation of a function, or by using a local assignment (let ... in) facility.

In the absence of these contexts, the control state of an m-variable provides a method for explicitly

managing the reuse of control states, rather than relegating the analysis of re-use to a smart compiler.

5.5. Guarded Commands

Assuming that each element of the control domain of each m-variable represents a predicate over

the data state of that m-variable, and the control state represents one of those predicates which is

asserted to be true, the firing constraint of each instruction can be regarded as a guard formed by the

conjunction of these predicates. Any guarded command can therefore be modeled by expressing its

guard in disjunctive normal form and creating a separate instruction (with the same operation) for each

disjunct. This F-Net form of guarded commands clearly shows the relationships between the guards of

different commands, both to the human in terms of the graphical form of the F-Net and to a scheduler

when determining when a guard must be re-evaluated. A compiler for Unity could very well use such

an F-Net as an intermediate form.

Similarly, the control states for a variable can be regarded as exception conditions, with the

instructions constrained by each control state being the exception handlers.

5.6. Graphical Specification Languages

Common graphical specification languages either detail the possible data relationships between

modules without defining the control relationships (e.g. dataflow diagrams or Entity-Relation dia-

grams), or they detail the control relationships without detailing the data relationships (e.g. Petri Nets).

In F-Nets, all of the information about each instruction’s behavior other than the actual mathematical

transformation between input and output is shown in the graphical version of the F-Net. The fact that

the graphical form does not express the mathematical transformation itself leaves it free of much of the

75

complexity to which Brooks refers in his refutation of the possibility of workable, graphical lan-

guages[9].

5.7. Imperative Sequential Programs

An imperative sequential unstructured program can be converted to an F-Net by making each

statement into an instruction, each variable into an m-variable having a single-element control domain,

and the instruction counter into a variable with no data state but a very large control domain, with each

possible control state representing the location of a statement. Each instruction would be bound to the

appropriate data variables and to the proper control state of the instruction counter. The resultant F-Net

would contain no concurrency aside from some possible optimistic buffering due to non-volatile argu-

ments, and the graphical representation would resemble a rat’s nest of arcs to m-variables, and a too-

detailed depiction of control by the fingers within the instruction counter variable.

Instead of this fine-grained approach, an instruction in an F-Net typically consists of a group of

logically-related statements, and m-variables contain logically-related groups of variables. The control

state is moved away from the central program counter, instead being distributed among the "states of

completion" (control states) of the program’s variables (m-variables), enforcing only the order in which

they are accessed by different instructions.

In this form, each instruction resembles a block in a structured language, and transitions are

transfers among blocks. This transfer of control is looser than that employed in structured-

programming practices, but the graphical F-Net provides a flowchart for these branches, uncluttered

with the statement-by-statement control and data management that is better shown in the text of the

program. Unlike traditional process models where control structures hide within the communicating

processes, control state puts it between processes (instructions) so that decisions affecting subsequent

process execution are made explicit in the model.

76

5.8. Conclusion

The comparisons here have reg arded control state in a variety of different ways: as a predicate

for a guard, as a means of ensuring atomic execution, as part of the name of a variable, and as a pro-

gram counter. In addition, the elements of a variable’s control domain can be considered the states of a

finite state machine, which watches over access to the variable. We believe these examples illustrate

the power present in the simple concept of control state.

77

CHAPTER 6

Implementation

6.1. Introduction

The axioms defining the semantics of F-Nets in Chapter 4 provide a basis for determining

whether a specific implementation of the model is correct—i.e. whether the execution graphs produced

by an F-Net in the implementation obey the axioms. However, the axioms were chosen with the addi-

tional goal of facilitating efficient implementations on a variety of architectures. This chapter will

prove (by example) that this is indeed possible. First, a generic implementation will be developed and

shown to obey the axioms. Then, this implementation will be optimized separately for shared-memory

and message-passing architectures.

6.2. Definition of a Valid Implementation

Let F be the set of all legal F-Nets (minus isomorphisms), andX be the set of all legal execution

graphs (minus isomorphisms). Then the semantics of F-Nets given in Chapter 4 can be considered as a

function

ρ: F → IP(X)

which maps each F-Net to the set of all legal execution graphs for that F-Net. The F-Nets and execu-

tion graphs described in Chapter 4 will be called abstract, andρ will be called the interpretation func-

tion.

A specific host environment for F-Nets, which includes language processors, a run-time environ-

ment, and the host computer’s architecture, can also be considered as the definition of a concrete

implementation function,

78

ρ: F → IP(X)

which maps a concrete representation of an F-Net (e.g. a text program representing the F-Net) to the

set of all of its possible executions in that environment. The form which these concrete executions take

may depend on a variety of factors.

A valid implementation for the F-Net model will be defined as a 3-tuple

\
/ρ, π F , π X /

\

where

ρ is aConcrete Implementation(as described above),

π F : F → F is anF-Net abstraction

π X: X → X is anExecution abstraction

such that

∀ f ∈F . π X(ρ(f))⊆ρ(π F (f))

See Figure 6.1. In English, this means that an implementation must present a means of "running" a

concrete F-Net and of abstracting both the concrete F-Net and its execution such that the abstract

execution graph always satisfies the semantic axioms with respect to the abstract concrete F-net. It is

not necessary that the concrete implementation be capable of producing every execution graph which

satisfies the axioms, just so that every execution graph which itdoesproduce satisfies them.3

Axiom 5-liveness may require that the execution graphs corresponding to an F-Net be infinite,

possibly having no finite representation, so there may be no way for a concrete implementation to pro-

duce its concrete execution graph in a finite amount of time. In light of the fairness rule discussed in

chapter 3, we instead require that any finite prefix subgraph of the execution graph be computed in a

3One valid, but worthless, implementation would map every concrete F-net to an empty abstract F-Net, allowing the ex-
ecution abstraction and concrete implementation functions to be empty.

79

x3

x2

x1

x5

x4

x3

x2

x1

ρ

ρ
π X

π F
f f

Figure 6.1 Relationship of Mappings for a Hypothetical F-Net

finite time. (We specifically donot require that this amount of time be predictable, nor even that it be

possible to tell when the time has elapsed.) This means that an implementation must enlarge the graph

ev enly in some sense.

6.3. A Generic Implementation

In this section, a generic implementation will be proposed and argued to be valid. The first two

subsections will define the forms for the concrete F-Net and concrete execution graphs in the generic

implementation, and will describe theπ F and π X mappings which interpret these as abstract F-Nets

and execution graphs.The third subsection will concentrate on defining theρ function which executes

the concrete F-Net on an actual architecture to produce the concrete execution graph.

80

6.3.1. Concrete F-Nets (π F)

The concrete C-based textual syntax that was presented informally in the Chapter 3 "sum of

squares" example will be used for the generic implementation. A more formal description of the syn-

tax follows:

fnet := Vars var+ Ops op+ Instrs instr+

var := type varname(cstatename+)
op := opname[arg+] opbody
arg := rwperms argname(transname+)
rwperms :=in type |out type |inout type |
nodata
instr := opname[binding+]
binding := argname: cstatename varname(transbdg+

)
transbdg := transname: cstatename

where

varname, cstatename, opname,andtransname

are legalC identifiers

type is a legalC type expression (possibly a structured type)

opbody

is a legalCprogram block with the following caveats:

(1) Statements which could facilitate communication with other programs are disallowed. This

includes I/O. (Chapter 7 will address how I/O can be built into the model.)

(2) Arguments declared in thearg section which haverwperms other thannodata can be

accessed within the program as though they were variables with the associated type, except that

they cannot be aliased.in arguments cannot be used in any context in which their contents

could be modified.

(3) Transition statements, of the form

< transname argname>

81

are included, whereargnameis an argument of the operation andtransnameis a legal transi-

tion of that argument, as identified in the operation signature.

6.3.2. Abstraction of Concrete F-Nets (π F)

The concrete F-Net is abstracted in a fairly obvious way.2 The declarations inf represent the fol-

lowing mappings:

Variable Declarations

Thevar productions represent a mapping:

Var_dec: Varname→ (CtlDom → IN)

i.e. each variable name is associated with a mapping from the declared control domain of that

variable to the natural numbers. TheCtlDom → IN mapping is sequential within the variable

(i.e. the first-mentioned control state to 1, the second to 2, etc.).

Operation Declarations

Theopproductions represent a mapping:

Op_dec: Opname→ (Argname→ (IN × RWperm× (Transname→ IN)) × Opbody)

i.e. each operation name is associated with an argname mapping (corresponding to thearg pro-

ductions), and an operation body. The argname mapping associates each argument name with

(1) an element ofIN , (2) a read-write permission (a member of {in, out, inout, nodata}), and (3)

a mapping which associates each transition name with an element ofIN . The Argname→ IN

mapping is sequential within the operation, theTransname→ IN mapping is sequential within

the argument.

2If a formalized view of this "obvious" interpretation is not helpful, the reader can safely skip all but the discussion ofφ in
the last few paragraphs of this subsection.

82

Instruction Declarations

The instr productions represent a mapping

Instr_dec: Instr →

(Opname× (Argname→ CtlDom× Varname× (Transname→ CtlDom)))

Based on these mappings, the F-Netπ F (f) = \
/Σ, S,O, I /

\ is defined. Since the abstract model does not

address the issue of types,Σ will be taken to be the set of strings of bits, and types will be mapped onto

this set as appropriate.S will be the domain ofVar_dec (i.e. the set of all variable names).O and I

will be the range of the mappingsOps: Opname→ O and Instrs: Instr → I which are defined below.

(In these definitions, lower case names are free variables.)

Ops: Opname→ O

Ops(opn) is defined as\
/a, R,W,φ /

\ whereOp_dec(opn) = \
/sig, opbody/

\ and

a ≡ |Domain(sig)|

R ≡ {arg|sig(argn) = \
/arg, rwp, transs/

\ // \\ (rwp = in \\ // rwp = inout)}

W ≡ {arg|sig(argn) = \
/arg, rwp, transs/

\ // \\ (rwp = out \\ // rwp = inout)}

φ is defined via the behavior of theopbodyprogram, as described shortly.

Instrs: Instr → I

Instrs(instr) is defined as \
/o, β ,γ ,δ /

\ where Instr_dec(instr) = \
/opn, args/

\ and

Op_dec(opn) = \
/sig, opbody/

\ and

o ≡ Ops(opn)

β ≡ {(arg, sw)|sig(argn) = \
/arg, rwp, transs/

\

// \\args(argn) = \
/ pbnd, sw, tbnd/

\}

γ ≡ {(arg, cstate)|sig(argn) = \
/arg, rwp, transs/

\

// \\args(argn) = \
/ pbnd, sw, tbnd/

\// \\Var_dec(sw)(pbnd) = cstate }

δ ≡ {(arg, (trans, cstate))|sig(argn) = \
/arg, rwp, transs/

\// \\transs(transn) = trans

83

// \\args(argn) = \
/ pbnd, sw, tbnd/

\// \\Var_dec(sw)(cstate) = cstate// \\tbnd(transn) = cstate }

In the definition ofOps, the result ofφ (arg1, arg2, . . . , arg|R|) is defined by theopbodyprogram’s

behavior when it is executed after initializing (a) the argument variables corresponding to the opbody’s

in andinout arguments with the valuesarg1
. . .arg|R|, and (b) the argument variables corresponding

to the operation’sout arguments with pre-determined constant initialization values (e.g. zeroes). A

transition statement has no effect on the execution except that any further reference to that argument,

either within a transition statement or as a reference to the data values associated with it, will cause the

program to halt. The result of the firing function,

\
/res1, res2, . . .res|W|, t1, t2, . . . ta /

\

is the following interpretation of that execution:

targ:

If a transition statement executes for argumentarg, thentarg ≡ trans, wheretrans is the transition

field from the first such statement executed. Ifarg is non-volatile,targ ≡ 1. If neither of the above

is true,targ ≡ .

resk wherearg is thekth write (out or inout) argument:

If a transition statement executes for argumentarg, thenresk is the value assigned to the argument

variables associated witharg when the first such statement executed. If a transition statement

does not execute forarg, resk ≡ .

Although determining the result of evaluatingφ with some arguments may be undecidable in some

cases, it is nonetheless well-defined and meets the requirements for a firing function for an operation

with that signature. Note that the initialization ofout arguments to a constant is necessary; if they

were not initialized, and the argument variables (or portions thereof) were not assigned new values dur-

ing execution of the opbody program, then the remaining data values when a transition was performed

would not necessarily be a function of the values present on the readable arguments when the execu-

tion began. This initialization also allows the program to read the values associated with anout

84

argument without disturbing the functional nature of the required mapping, since the values read will

either be the original constant values or new values which must already be a function of the values

originally on the read arguments.

6.3.3. Concrete Execution Graphs and Their Abstraction(π X)

A concrete execution graph will be of the form

x = \
/C, E, B, A, σ̂ ,σ , ε , fair /

\

where

C, E, B, A, σ̂ , andσ are identical in form to an abstract execution graph

ε : E → Cont× Storeis theExecution Stateof e

fair is theFairness State

ε and fair will be described in more detail later. Their role is to help determine the next action to per-

form on the concrete execution graph. The abstract interpretation of a concrete execution graph will be

obtained by omittingε and fair—i.e.

π X(\
/C, E, B, A, σ̂ ,σ , ε , fair /

\) ≡ \
/C, E, B, A, σ̂ ,σ /

\

6.3.4. Concrete Implementation (ρ)

This section will describe a concrete implementationρ. First, a strategy will be presented, then

this strategy will be shown to meet the requirements forρ: i.e. any finite prefix subgraph of the result-

ing concrete execution graph will obey the semantic axioms within a finite amount of time. Then, an

implementation based on that strategy will be presented and shown to correctly implement the strategy.

6.3.4.1. Strategy

The strategy of the concrete implementation will be to define a mappingρ′: X → X which takes

a concrete execution graph and returns one which is somehow more well defined: i.e. is closer to

85

obeying the semantic axioms than its predecessor. A partial ordering on execution graphs will be

defined to formalize exactly what this means.ρ is then defined as the result of callingρ′ recursively

on the empty execution graph,X (i.e. ρ′(ρ′(. . . ρ′(X) . . .))) an infinite number of times.

To avoid referring back to concrete syntax, the abstract F-Net corresponding to the concrete F-

Net (obtained byπ F described above) will be used as a precise notation for describing the implementa-

tion. The abstract definition of the firing function,φ , is not useful for implementation, however, since

it was not defined in terms of the syntax of theopbodyprogram, but its behavior.

To address this, we describe here, for eachopbody, a continuation which maps an initial program

store to a final program store, by treating theopbodyas aC program, but augmenting the traditional

store used byC, which we will callcstore, with four other kinds of store which will be acted upon by

transitions and data state references. The overall store operated on by theopbodywill be a tuple

store≡ \
/cstore, tstore, fstore, sstore, estore/

\.

tstore: A set containing the arguments for which transition statements have been performed by the

current execution.

fstore: A set containing the non-volatile arguments for which a transition has been automatically

performed (by the Finishing step, defined below).

sstore: A vector of segments, indexed by argument, which contains the values for the operation’s

argument variables.

estore: A vector of IN , indexed by argument, which contains the transition performed to each of the

operation’s arguments.

The argument references in theopbodyare now converted to executable code as follows. Each refer-

ence to an argument variable for argumentarg causescheck_arg(arg) to be executed before the

appropriate access tosstore[arg] is performed, where

86

check_arg(arg) ≡
If arg∈tstore

halt

Each transition statement<trans arg> in the opbody becomesperf_trans(trans, arg) where

perf_trans(trans, arg) ≡
check_arg(arg)
tstore← tstore∪ {arg }
if arg∈/ fstore

estore[arg] ← trans

With these translations, theopbodydefines a continuation which maps an initialstore to a finalstore.

i .o.φ′ will refer to that continuation.

The σ̇ and ¨σ mappings are defined for concrete execution graphs as follows: (Elements ofstore

should be prefixed byε (e).store.)

ċ ≡




1

ê.δ (arg)(estore[arg])

if * c = {}

if * c = {e} (where arg= ê.β −1(c))

c̈ ≡







ι(c)

sstore[arg]

if * c = {}

if * c = {e}// \\ arg∈(tstore∪ fstore)\ ̂e.o.W (where arg= ê.β −1(c))

otherwise

Define ρ′(x) ≡ x′, wherex′ is identical tox except that one or more of the alterations described in the

following four steps have been applied:

Initialization: Create a new initialc node

If ∃v∈V ∀c∈C. c ≠ s then create a newc node and definec ≡ s.

Extension: Create newe node and successorc nodes

If ∃i ∈I ∀arg∈[1, i .o.a]∃c∈C. c* = {} // \\ c = i .β (arg) // \\ ċ = i .γ (arg) then

(a) Create a newe node, make it the successor for all thec nodes instantiated in the condition,

define ê ≡ i , and defineε (e) ≡ \
/i .o.φ′, \

/cstore, {} , {} , sstore, estore/
\

/
\, wherecstore is the ini-

tial store as defined by theC implementation, all elements ofestoreare , and

87

sstore[arg] ≡




0

c̈

if arg∈i .o.W\i .o.R

otherwise(where c* = e// \\c = i .β (arg))

(b) For allarg∈[1, i .o.a], create ac node, make it a successor toe, and definec ≡ i .β (arg)

Execution: Advance the execution state of ane node

If ∃e∈E. ε (e) = \
/cont, store/

\ // \\ cont ≠ halt,

then evaluatecont(store) for a finite amount of time, yielding a new continuationcont′ and store

store′. Defineε (e) ≡ \
/cont′, store′ /

\.

Finishing: Perform transition to a non-volatile argument

If ∃e∈E, arg∈[1, ê.o.a]. arg∈/ ê.o.W// \\ê.o.τ (arg) = 1

// \\ε (e) = \
/cont, \

/cstore, tstore, fstore, sstore, estore/
\

/
\// \\arg∈/ tstore∪ fstore

then defineε (e) ≡ \
/cont, \

/cstore, tstore, fstore′, sstore, estore′ /
\

/
\ where fstore′ = fstore∪ {arg }

andestore′ = estoreexcept thatestore′[arg] = 1

The frequency in which these steps will be executed in subsequent iterations ofρ′ will be constrained

by the following fairness criterion:

For some set of free variable instantiations, the condition for a step will not remain true for more

than a finite number of applications ofρ′ before the step is executed.

The role of fair is to record enough history of which steps have been applied to guarantee the fairness

constraint. For example,fair could be implemented as a simple vector of the number of applications

of ρ′ that have occurred that have not executed a particular step.

6.3.4.2. Validity of Implementation Strategy

Define the following partial order over concrete execution graphsX:

x x′ ≡ (∀c∈x.C, c′∈x′.C. c=∼∼c′ ==>ċ ċ′ // \\ c̈ c̈′) // \\ x is a prefix subgraph ofx′

88

i.e. execution graphx is less well defined thanx′ if x is a prefix subgraph ofx′ and the control and

data states of all of thec nodes inx are less well defined than those inx′. The bottom element of this

partial order is the empty execution graph.

By this definition,x ρ′(x). That the x is a prefix subgraph ofρ′(x) follows directly from the

Initialization and Extension steps. That the new graph has more well defined ˆσ andσ functions is

shown as follows. If ac node is introduced without predecessors (in the Introduction step), ˙c and c̈ are

well-defined, and since no step gives predecessors to a previously-existingc node, remains well

defined. If ac node is introduced with a predecessore (in the Extension step), ˙c will have a non-

value precisely when the argument of ˆe bound toc is a member oftstore∪ fstore, and this condition

cannot be made false nor can the valueestore[arg] be redefined once this condition is true. ¨c is

defined only under the same condition or whenarg∈/ ê.o.W. In the former case, the valuesstore[arg]

cannot be redefined for the same reasons as ˙c, and it cannot be redefined in the latter case due to the

syntactic restriction that such argument variables cannot be used within theopbodyin a context where

their contents can be altered.

Thus, ρ′ is monotonic in the sense that it does not move down oracross the partial order. The

remainder of this section shows that it not only moves up the partial order, but that the semantic axioms

will hold for any finite prefix subgraph of the concrete execution graph within a finite number of recur-

sive applications ofρ′. (Clearly, each application takes a finite time.)

Axiom 1: The property that

∀s∈S∃c0∈C. c0 = s// \\ċ0 = 1// \\c̈0 = ι(s)

is ensured by fairness of Initialization and the definition of ˙σ and ¨σ . That thesec0s are mem-

bers ofC0 (i.e. precede all members ofC having the same name) follows from the fact that all

other c′∈C. c = s are created in the Extension step, and each such node can be inductively

shown to be preceded by ac node with the same name created in the Initialization step.

89

Axiom 2: A c node is given a successor only in the Extension step and only under the condition that it

does not already have successors, and is given a predecessor only in the Extension step, and

only under the condition that it is newly created (i.e. has no predecessors).

Axiom 3-Structure and Axiom 3-Condition: Only the Extension step createse nodes or gives them

predecessors or successors, and it obeys these axioms by definition.

Axiom 3-Result: The fairness constraint ensures that the Execution step will be repeatedly applied to

ev ery execution state until it halts. The continuous semantics of sequential computer languages

ensures that if the sequential computation denoted by the concrete operation includes

perf_trans , then it will be executed in a finite number of applications ofρ′. The fairness

constraint also ensures that the Finishing step will be executed for all non-volatile arguments

for whichperf_trans has not executed within a finite number of calls. Axiom 3-Result fol-

lows directly from these and the definition of the ˙σ and ¨σ labelings.

Axiom 4-Non-interference: Ensured by the initialization ofsstorein the Extension step, and by the

definition ofσ̈ .

Axiom 5-Liveness: Ensured by the fairness constraint applied to the Extension step.

Axiom 6-Time: No step gives a predecessor to an already existing node, and no step creates a cycle.

6.3.4.3. Pseudo-code for the Generic Implementation

This section presents an efficient implementation of the above strategy. First, it will be assumed

that S is finite, so all applications ofρ′ which perform the Initialization step can be performed first.

Second, the Extension condition can be checked, and the Extension step executed, immediately when-

ev er the control state of a "terminal"c node (i.e. one without successors) becomes defined within the

Initialization or Finishing steps. The Execution step can be made efficient by keeping all\
/cont, store/

\

pairs on a "run" queue, which is serviced in a fair, round-robin fashion. Entries need not remain on the

queue for instructions which have halted or performed transitions to all of their arguments, since

90

further advancement of execution will not affect any aspect of the execution graph other than the con-

tinuation or store itself. The precise time and method of invoking the Finishing step will not be

detailed until later sections on implementations for specific architectures.

To facilitate efficient checking of the Extension condition and performance of the Execution

step, the ˙σ and ¨σ labelings will be maintained explicitly, and only for the terminalc nodes. The data

state for the terminalc node for whichc = s will be calleddstate[s]. The control of these terminalc

nodes state will not be maintained directly, but will be reflected in an vector calledreasons, indexed by

instruction: reasons[i] will equal n if the c nodes forn of its argument bindings either do not exist or

the terminal nodes have a control state other than that of the instruction’s firing constraint. Thus, the

condition in the Extension step will reduce to testing whether thereasonscount for that instruction is

0.

With these changes,estorebecomes redundant—all assignmentsestore[arg] ← trans will be

replaced with calls todec_count(i .β (arg), i .δ (arg)(trans)) , which will decrement the reasons for

all instructions bound to the variable and constrained by the control state mentioned in the arguments,

and check whether the execution condition has been met for those instructions. This requires that

perf_trans has access toi (the instruction on whose behalf the operation is executing), so we aug-

ment the store withistore which contains the current instruction. Thestore now consists of

\
/cstore, istore, tstore, fstore, sstore/

\

Portions of the execution graph which will no longer be used in performing the steps will simply

be discarded. All side-effects of graph creation will be present even though the graph itself will not be

maintained. Annotations will relate each portion of the code to the steps above sothat code to keep the

graph can be added if desired, say for debugging purposes.

perf_trans(trans, arg) now becomes

perf_trans(trans, arg) ≡
check_arg(arg)

91

tstore← tstore∪ {arg }

***Define ċ = istore.δ (arg)(trans) where c
*** is the oldest node such that c = istore.β (arg)
***If arg has write usage, define c̈ = sstore[arg]

if arg∈istore.o.W
dstate[istore.β (arg)] ← sstore[arg]

if arg∈/ fstore
dec_count(istore.β (arg), istore.δ (arg)(trans))

if tstore∪ fstore= [1, istore.o.a]
halt

Since we assume thatfstoreis lost when an evaluation finishes, the "normal halt" (executed after

the last line of code in an operation) must now ensure that all non-volatile arguments are finished:

normal_halt ≡
for arg∈[1, istore.o.a]. arg∈/ istore.o.W // \\ istore.τ (arg) = 1

if arg∈/ fstore
fin_trans(arg)

The concrete implementation (minus invocation of the finishing step) isconc_imp , where:

conc_imp ≡
init0
init1 | serve_q | serve_q | serve_q | . . .

init0 ≡

***Initialize the execution graph to be empty

for i ∈I
reasons[i] ← i .o.a

init1 ≡
for s∈S

*** INITIALIZATION: Create c node, define c ≡ s, ċ ≡ 1, c̈ ≡ ι(s)

dstate[s] ← ι(s)
dec_count (s, 1)

serve_q ≡
repeat

\
/cont, store/

\ ← dequeue

92

*** EXECUTION

\
/cont′, store′ /

\ ← tslice (cont, store)
if cont′ ≠ halt

enqueue (\
/cont′, store′ /

\)
forever

dec_count (s, n) ≡

***For each instruction which benefits from new control state
*** of c node...

a0:for i ∈I . ∃arg∈[1, i .o.a]. i .β (arg) = s // \\ i .γ (arg) = n

*** Decrement number of reasons it cannot fire

a1: reasons[i] ← reasons[i] − 1

*** If no more reasons (i.e. Extension condition true) ...

a2: if reasons[i] = 0

*** EXTENSION:
*** Create new successor c nodes with control state

a3: inc_counts(i)

*** Create new e node, define ê ≡ i , initiate associated
*** opbody

initiate(i)

inc_counts (i) ≡

***For each argument of new e node...

for arg∈[1, i .o.a]

*** Let c′ be oldest c node such that c′ = i .β (arg)
*** Create new c node, define c ≡ i .β (arg), ċ ≡
*** If arg has no write usage, define c̈ ≡ c̈′
*** For each instruction which benefited from control state
*** of c′ ...

a4: for i2∈I . ∃arg2∈[1, i2.o.a]. i2.β (arg2) = i .β (arg) // \\ i2.γ (arg2) = i .γ (arg)

*** Increment number of reasons it cannot fire

reasons[i2] ← reasons[i2] + 1

93

initiate (i) ≡
for arg∈i .o.R

sstore[arg] ← dstate[i .β (arg)]
for arg∈i .o.W\i .o.R

sstore[arg] ← 0
enqueue (\

/i .o.φ′, \
/cstore, i , {} , {} , sstore/

\
/
\)

The Finishing step will consist of performingfin_trans(arg) for non-volatile argumentarg,

where

fin_trans(arg) ≡
if arg∈/ tstore

fstore← fstore∪ {arg }

*** FINISHING: Define ċ ≡ istore.δ (arg)(1), where c
*** is oldest node such that c = istore.β (arg)

dec_count (istore.β (arg), istore.δ (arg)(1))
if tstore∪ fstore≡ [1, istore.o.a]

halt

The optimal time and method of invokingfin_trans (other than that innormal_halt) will

depend upon the specific architecture.

In order to ensure that the Extension step executes only when the condition is true, the test ata2

and the execution ofinc_counts at a3 must together occur atomically. In addition, the decrement

at a1 must occur as an atomic step to avoid read-write conflicts. These atomicity constraints could be

ensured by providing that only one instruction performdec_counts at a time (perhaps by funneling

all executions through a common monitor or acquiring a global lock) or by separately assigning each

reasonscount its own lock and locking all that could be accessed byinc_counts beforea2 , but the

former solution creates a global bottleneck while the latter creates significant overhead in dealing with

each instruction separately and avoiding deadlock. A middle ground can be reached by defining a

rivals relation <<>> as

i <<>> i ′ ≡ ∃s∈shared(i , i ′). i .b(i .β −1(s)) = i ′.b(i ′.β −1(s))}

94

(i.e. two instructions are rivals whenever their firing constraint uses the same control state at least one

variable) and arivalry as the transitive closure of <<>>. By this definition, all instructions refer-

enced in thefor at a0 plus all instructions referenced in thefor at a4 will belong to the same

rivalry. We will enforce the atomicity constraints by restricting execution ofdec_counts to one

instruction per rivalry at a time. (Note that the call toinitiate does not need to be protected, but

moving it outside of thedec_counts logic requires additional bookkeeping overhead.)

6.4. Optimizing Concrete Execution for Differing Architectures

Both a shared-memory and message-passing implementation will be presented. Both will be

based on the generic implementation described in the last section, but will differ in the details of copy-

ing and maintainingdstateandsstore, and deciding when to invokefin_trans .

6.4.1. Shared Memory

The primary focus behind the shared memory implementation will be to reduce or eliminate

copying ofdstateto sstorein initiate . For the most part, this is accomplished by using thedstate

directly in place of the sstore (i.e. replacing the sstore[arg] ← dstate[s] statements with

sstore[arg] ≡ dstate[s]).

The flaw with this simple implementation is that an instruction may continue to accessdstate

after fin_trans has been performed, andfin_trans may allow another instruction to begin

execution and access the samedstateconcurrently with the current instruction. If the subsequent

instruction does not have write usage to the variable, or the current instruction does not have read

usage, no harm is done—the memory can be shared by both instructions. If, however, an instruction

with write usage to the variable is initiated while an instruction is still reading the variable, they clearly

cannot access the samedstatebuffer without disastrous consequences. In this case, a new version of

thedstatefor that variable must be allocated and used by the new instruction, leaving the old version to

95

be deallocated when the last reader has finished with it. If the new instruction has read usage to the

variable (in addition to its write usage), the contents of the old version must be copied to the new one.

The following replacements ofinitiate andperf_trans are based on the above descrip-

tions. Instead of containing data state,dstate, andsstate(and m) now contain pointers to a tuple of

\
/readers, version, data/

\, wherereaderscontains the number of instructions reading the data state,ver-

sion is the version number of the data state, anddata is the actual data state. An auxiliary vector,ver-

sion, contains the number of the latest version for each variable.alloc allocates a data state tuple

and returns a pointer to it,dealloc deallocates the data state associated with such a pointer. Indirec-

tion is represented by *.

initiate (i) ≡
s ≡ i .β (arg)
for arg∈i .o.W

if * dstate[s].readers≠ 0
m ← alloc()
if arg∈i .o.R

* m.data ← * dstate[s].data
dstate← m
* dstate[s].readers← 0
version[s] ← version[s] + 1
* dstate[s].version← version[s]

if arg∈/ i .o.R
* dstate[s]. data ← 0

for arg∈i .o.W ∪ i .o.R
sstore[arg] ← dstate[s]

enqueue (\
/i .o.φ′, \

/cstore, i , {} , {} , sstore/
\

/
\)

perf_trans(trans, arg) ≡
check_arg(arg)
tstore← tstore∪ {arg }
s ≡ istore.β (arg)
if arg∈istore.o.R

* sstore[s].readers← * sstore[s].readers− 1
if * sstore[s].readers= 0// \\sstore[s].version≠ version[s]

dispose(sstore[s])
if arg∈/ fstore

dec_count(s, istore.δ (arg)(trans))
if tstore∪ fstore= [1, istore.o.a]

halt

96

In addition, all other references tosstore[arg] must be replaced by *sstore[arg].data. To ensure that

only one instruction per rivalry performs thedec_count code, each rivalry must be assigned a lock

whichdec_count must acquire to execute.

There are other ways to optimize this implementation. The above tricks with pointers (and thus

the extra indirection) can be avoided completely for variables with no non-volatile readers, or where it

can be statically determined that a non-volatile reader will never relinquish the variable to a writer.

Also, fin_trans can be delayed for any finite amount of time, and doing so may allow a reader to

finish before a writer to the same variable is initiated, avoiding the need for making a copy. In fact,

each time another reader of the variable is initiated, this time starts over, so if reader initiations

progress continuously, a writing instruction may be postponed indefinitely without violating the fair-

ness in the model. In the general case, however, parallelism can be maximized by performing

fin_trans as soon as possible after thee node is created. The conflict between parallelism and

copying overhead can be addressed directly by allowing the F-Net programmer to include hints within

the concrete F-Net code.

6.4.2. Message-Passing

The message-passing based implementation described here will assume that the instructions are

statically assigned to processors. This assignment can be performed randomly, or based on a static

analysis of the F-Net together with a knowledge of the interconnect network present in the hardware.

The functionality of the implementation is distributed among processes, both by replicating some

of the procedures (such asdec_count) and by splitting single procedures (such asinit0 andini-

tiate).

Initialization Process

An initialization process will contain the code for the main process:

init_process ≡

97

for i ∈I
spawn instruct_process[i]

for r ∈ set of rivalries
spawn rivalry_process[r]

init1

The code forinit0 is distributed among the rivalry processes.

Rivalry Processes (One per Rivalry)

A rivalry process will perform theinit0 code for its rivalry, then will await messages request-

ing thatdec_count be invoked for an instruction in the rivalry. The process will contain the

code fordec_count and the procedures called by it (inc_counts andinitiate) and will

locally maintain allreasonscounts associated with the rivalry, as well as alldstateentries during

the time that they might be needed by an instruction in the rivalry (i.e. while the control state of

that variable corresponds to a control state belonging to the rivalry).

rivalry_process [r] ≡
for i ∈ rivalry r

reasons[i] ← i .o.a
repeat

await message \
/i , arg, trans, newdstate/\

s ≡ i .o.β (arg)
n ≡ i .o.δ (arg)(trans)
dstate[s] ≡ newdstate
dec_count (s , n)

forever

initiate will be replaced by

initiate (i) ≡
for arg∈[i .o.a]\i .o.W

sstore[arg] ≡ dstate[i .β (arg)]
send \

/sstore/
\ to instruct_process[i]

The missingsstore initialization code is performed within the instruction process. Note that

ev en thesstorefor arguments which are not read nor written is sent to the instruction process,

since thesstoremust be forwarded to the new rivalry when a transition is performed.

98

Instruction Processes (One per Instruction)

An instruction process contains the code corresponding to the opbody corresponding to the

instruction’s operation.

instruct_process [i] ≡
repeat

await message \
/sstore/

\

for arg∈i .o.W\i .o.R
sstore[arg] ← 0

tstore← {}
fstore← {}
for arg∈[1, i .o.a]. arg is non-volatile

fin_trans(arg)
enqueue (i .o.φ′, \

/cstore, i , {} , {} , sstore/
\)

forever

The calls todec_count(s, n) within perf_trans andfin_trans are replaced by

send \
/istore, arg, trans, sstore[arg] /

\ to rivalry_process [r]

where r is the rivalry corresponding to the new control state. The if. . .dstate[s] ≡ . . . code

should also be removed fromperf_trans , since the instruction process no longer maintains

dstate.

In cases where a rivalry contains exactly one instruction, the functionality of the rivalry process

can be combined with that of the instruction process. Further optimizations based on the F-Net topol-

ogy and read-write usages of arguments can minimize the number of times adstatemust be passed by

bypassing the rivalry process in some circumstances. Shared memory techniques can also be used to

avoid messages when multiple instructions reside on the same processor.

6.4.3. Final Implementation Notes

It has been noted that parallelism is increased by performing thefin_trans operation as soon

as possible after initiation of the instruction. Taking this to its natural extreme,fin_trans can be

called as part of theinitiate code so that the results can be felt even before the execution of the

99

opbody has begun. If this is done, a safeguard must be taken to ensure that looping does not occur

within initiate when auselesssubgraph is entered. This is a subgraph of an F-Net where the

semantics dictate that each instruction in the sub-graph can fire again if it fires once, due to all of the

instruction’s arguments being non-volatile and always allowing another instruction (perhaps itself) with

the same characteristics to fire. To prevent this, useless subgraphs can be detected syntactically before

execution and handled specially.

The data flow nature of the model suggests an alternate implementation for message-passing

architectures. In it, the instruction processes do not pass data state to the rivalry process on each transi-

tion, but instead report the location (processor and address) of the data state. The rivalry process now

has three jobs: (a) to determine when an instruction can fire (as before), (b) to determine the optimal

processor on which to execute that instruction (based on the locations of all of the variables and the

requiredopbodyprogram, as well as the load on each processor) and (c) to direct message traffic to

move the code and data to the optimal processor. Such an implementation would benefit from an archi-

tecture in which one processor (i.e. the rivalry’s) could initiate messages from a second processor (i.e.

that containing the data state or opbody) to a third processor (i.e. the optimal processor). Under some

circumstances, data state and/or opbody code could be preemptively sent to a probable optimal proces-

sor before the instruction is ready to fire, or even replicated onto several possibly-optimal processors.

Unlike other process-migration techniques, no run-time state would need to accompany the opbody,

and unlike standard dataflow techniques, data would not move to a "waiting-matching" store before

moving to its final destination.

100

CHAPTER 7

Future Directions and Conclusions

7.1. Introduction

This work has presented F-Nets primarily as a theoretical model, although an implementation

has been outlined to demonstrate its portability. This chapter will speculate on uses that might be made

of the model, and on how it might be made more usable. The first section will propose some exten-

sions to the model that could make it amenable to building large software systems. We then outline

how F-Nets could provide leverage in developing software-engineering tools. Finally, we propose an

architecture to efficiently execute F-Net programs.

7.2. Extensions to F-Nets

The F-Net model provides a framework for building operations which are atomic, deterministic,

and stateless, and then for constructing a concurrent program from these operations. In practice, pro-

grams are not built or analyzed in this monolithic fashion: they consist of fragments, or modules,

which are built separately and then composed. This ability to compose modules is a primary selling

point of object-oriented programming, for example.

F-Nets can be modified to accommodate a very simple form of composition by augmenting F-

Net fragments, or modules, with arguments similar to operations. This allows an F-Net instruction to

bind either an operation or an F-Net module into another F-Net. The arguments are represented within

the module implementation as formal m-variables, to which instructions within the implementation can

be bound. This same extension can allow an F-net to bind to other "outside-world" objects, such as the

input and output streams provided by an operating system. In itself, this extension does not make F-

101

Nets more powerful, simply decomposable.

An extension which does add power is the treatment of modules and operations as first-class

objects. In other words, an m-variable can contain the description of an operation or module as its data

state, and a specialbind operation is provided which takes such a description as an argument and

"becomes" that operation or module when it fires. By allowing bindings to also be first class objects,

also to be fed to thebind instruction, dynamic binding becomes possible.

With these extensions, the primary difference between F-Nets and object-oriented programming

is persistence. This can be added by providing another operation, calledinstantiate , which takes

a module description and returns another module description which is equivalent to the first except that

the m-variables within are instantiated: i.e. whenever and wherever the module is bound, it will use

the same copies of the m-variables with the same control and data states. An instantiated module can

therefore be passed around as an object. When there is a need to access the object, it can be bound

with a bind operation, allowing some of the instructions within to fire and access or alter the m-

variables ("instance variables").

To provide a method of passing arguments through multiple levels of binding, arguments (arcs)

can be extended to represent a bundle of arguments, called acable. These cables can be nested hierar-

chically, allowing entire contexts of variables to be brought into out of, or through a level of module

hierarchy. This allows for a very precise, controlled, yet flexible management of scope, foreign to most

object-oriented languages.

A much more basic extension that must be provided to F-Nets before they are usable in an appli-

cations environment is the ability to partition m-variables. With the semantics outlined in this disserta-

tion, if an entire array is present on a single m-variable, it is only accessible to one instruction at a time,

regardless of whether other instructions would attempt to access the same elements. By creating arrays

of m-variables and methods to bind arguments to portions of these arrays, this access contention can be

102

addressed within the semantics of the model and handled properly by a scheduler, though perhaps at

the cost of higher overhead per element.

7.3. Software Tools

Four inter-related features of F-Nets make them particularly suitable as a basis for tools:

(1) The parallel and sequential aspects of a program are specified separately, each in a form best

suited to its function, so tools do not need to combine their approach to these very different

aspects of syntax and execution.

(2) The uniform graphical representation for parallel aspects of the program, across tools and

architectures, facilitates tool integration and similarity of user interface.

(3) The use of traditional sequential languages for implementing operations provides for the use or

adaptation of existing sequential tools.

(4) The model seen by the user is very similar to the model used during execution, facilitating a

"What you see is what you get" approach for execution-based tools.

7.3.1. Debugging/Monitoring Tools

Parallel debugging is regarded as a very difficult problem for several reasons. Sequential debug-

ging techniques are not easily adapted to parallel programs, due to the lack of global program state or a

single program counter. Non-deterministic execution makes re-creation of errors difficult, and this can

be complicated even more when program execution timings are affected by the debugging process.

Tracing the flow of control and data, or just determining what the correct flows should be, is difficult.

If the program was created by a parallelizing compiler or tool, the user may not be familiar with the

relationship between the source program and the program being debugged.

F-Nets address each of these problems. Because an F-Net consists of a graphical network, with

each node representing a sequential program which exhibits sequential behavior, these aspects of the

103

program can be approached separately. A high-level graphical interface[14] could be used to visualize

and control the parallel behavior of the F-Net, and a traditional sequential debugger could be invoked

for the low-level operation executions when needed. The desired flow of control and data is apparent

in the static F-Net, and the actual flows could be easily represented by highlighting various portions of

the graphical representation during an execution. If the software-engineering features of F-Nets lure

users to create programs using the model, the execution behavior of the program during debugging will

not be surprising or unfamiliar. Finally, the logging techniques described in Chapter 4 may well be

non-intrusive enough so that every execution could be logged. If this is the case, any execution could

be re-played within a debugger with exactly the same behavior as the original.

Perhaps the most important debugging feature provided by F-Nets is the likelihood that they

would not need to be debugged at all. In traditional process models, the user strategically places syn-

chronization and communication primitives in the program in order to obtain the desired execution

behavior, while with F-Nets, the user explicitly specifies the desired execution behavior, decreasing the

chances for accidental communication or synchronization.

7.3.2. Parallel Restructuring Tools

Parallel restructuring tools take a sequential program and produce a parallel program. Taking a

simplistic view, the resulting program is to have identical input/output behavior as the original sequen-

tial program—i.e. it is to represent the same function from input history to output history, but opti-

mized to run well on some specific parallel architecture.

This view is too simplistic. To hold to a rigid semantic mapping thwarts much of the possible

optimization which could occur for almost any parallel or vector architecture. A simple example of a

slight alteration in semantics is the order in which a floating point sum reduction is performed. Since

round-off errors will occur in different ways depending upon the order in which elements are summed,

altering this order can change the behavior of the program.

104

The programmer has no way of specifying, in a purely sequential language, whether the order of

the reduction is or is not important. If this information is conveyed to an interactive parallelizing tool,

it is typically captured in a form which is unique to a particular architecture: restructuring the same

program for another architecture would require the information to be specified again.

The problem above is aresult of the fact that both the source and the result of restructuring or

parallelizing is a specific implementation, rather than a description of the variety of implementations

acceptable to the programmer. A more productive approach might be to view restructuring in two-

steps:

(1) Converting a program into a more general version—i.e. providing non-deterministic choices

for implementation of various constructs—such that the input program is one instance of the

output program. This process will not be automatic, since the more general program can be

regarded as the specific program plus human knowledge of the specification. This generaliza-

tion process could be iterative, with the more general program serving as input later to create

an even more general program.

(2) Targeting a general program for a specific architecture. This could be done automatically or

with user interaction. The resulting program should always match the specification of the gen-

eral program, and may or may not be more specific (i.e. it may preserve the generality of the

specification in the form of non-determinism, or it may "hard-wire" non-deterministic choices

to some specific implementation).

For this approach to succeed, the programmer must be able to understand the output program

from step 1 and to accept it astheprogram to replace the original. The F-Net model may be able to aid

in this. The implementations described in Chapter 6 are examples of automatic targeting for parallel

architectures.

105

7.3.3. Real-time Programming

F-Nets do not contain timing information only because this would clearly violate their architec-

ture-independent qualities. Even on a given architecture, timing can change significantly depending

upon the policy used by the scheduler. Howev er, if these factors are known, the structure and simple

semantics provided by F-Nets could help in addressing real-time programming problems. By approxi-

mating the time that each argument of each operation would take to produce a transition after the oper-

ation fired, then utilizing information about the architecture and scheduling policy to determine appro-

priate compositions for these timings, best- and worst-case scenarios could be computed to determine

the effectiveness of the design or to alter scheduling decisions.

Non-determinism could also play an important role in real-time programming by serving as a

means of specifying alternate actions in emergency (near-deadline) situations. This would require

additional F-Net notation to specify when such an emergency action should occur, but it would not vio-

late the F-Net semantics in any case: whether or not the emergency occurred, one of the non-

deterministic actions would be taken, so the execution graph would still be valid.

7.4. Parallel Architecture

Although F-Nets have been proposed as an architecture-independent programming solution, spe-

cially developed architectures could take maximum advantage of the concurrency expressed in the

model. The division between the traditional sequential nature of the operations and the con-

trol/communication nature of the rest of the F-net could be reflected in the architecture design, even

without using special-purpose hardware, and the fact that F-Nets are designed to work in both high-

and low-latency ether could allow for both low-latency shared-memory within clusters of processors

and a high-latency scalable interconnect between clusters.

We propose an architecture consisting of clusters of processors, with each cluster consisting of

one or more operation processors (OP) to execute operation programs, and a net processor (NP) to

106

execute the net (i.e. perform scheduling decisions) and feed ready F-Net instructions to the OPs. Both

the NP and OPs read and write a common Node Memory, with OP accesses mapped through an MMU.

Tw o short queues are kept in Node Memory for fast communication between the NP and OPs: a queue

of operations which are ready to execute on this cluster, written by the NP, and an event queue written

by the OPs. The NPs in different clusters can communicate with each other via an interconnection net-

work.

Since the OPs execute all user code, they should consist of very powerful processors. An OP

repeatedly accesses the ready queue, obtaining pointers to an operation (i.e. a program implementing

an operation) and to each the data states for its arguments, then initializes the MMU for these segments

and begins executing the program. When the operation performs a transition, the corresponding seg-

ment is removed from the memory map, and a transition event is enqueued containing the argument

and transition. If the program halts or a memory protection violation occurs, all segments are removed

from the memory map, a halt event is enqueued, and the ready queue is read again.

The NP executes no user code, so it does not need excessive computation power or floating point

capability. The NP serves four roles: (1) a "manager" for some set of rivalries in a net (2) a slave to

the OP, (3) a slave to the interconnect (or more properly, to rivalry managers on other NPs), and (4) a

stopwatch for the OP.

(1) As manager for some rivalries, it keeps the current reasons counts for all instructions within

those rivalries, and keeps track of the locations of the program segment and data segments

needed to execute those instructions. When an instruction’s reasons count reaches zero, it is

charged with the responsibility of determining the best node to execute the instruction on,

based upon each node’s current load and locality to these segments, and directing communica-

tion to unify these segments on that node. It may direct extra copies of data and program seg-

ments to several nodes to provide maximum flexibility in choosing a node to schedule an

107

instruction.

(2) As slave to the OP, it monitors the event queue and relays the effects of events to the rivalry

manager which is affected.

(3) As slave to the interconnect, it receives commands from other rivalry managers which direct it

to send and receive program and data segments and to report on current load information.

When a complete instruction (the program and all data segments) has been received, it

enqueues this information in the ready queue for the OP.

(4) As stopwatch for the OP, it monitors the amount of time that the OP has been executing the

current instruction. If there are more instructions in the ready queue, it interrupts the OP caus-

ing it to perform a context switch (i.e. go back to the ready queue). The assumption is that the

OP will not need to timeslice between instructions in the general case.

More study would certainly need to be performed before pinning down the parameters for this

architecture, but the Cogent XTM[31] offers one interesting possibility for an interconnect: both a

high-speed bus for load status updates and data transfer commands, and a separate set of reconfigurable

channels to handle the actual transfer of data and program segments between node processors.

Adding disks to each NP could make this architecture effective at handling database applications

while also allowing little-used segments to be stored on disk rather than in node memory. Fault toler-

ance over single-OP or single-cluster failures could be implemented by having NPs create additional

copies of data segments after each transition as well as keeping track of transitions which had not been

relayed to other NPs.

7.5. Conclusion

F-Nets have been shown to be based on rational motivations: architecture independence, similar-

ity of algorithm to computation, and the preservation of sequential semantics where possible. A

108

construction has been proposed based on only these factors, and the result has been demonstrated to

fulfill its goals. Architecture-independence has been shown through actual implementation techniques,

in Chapter 6. Similarity of algorithm to computation has been shown formally, in Chapter 4. The

preservation of sequential semantics of each operation implementation was built into the model during

its construction in Chapter 3, and has been demonstrated in other chapters. In addition to achieving

these goals, F-Nets have been shown to be general enough to apply to a number of areas, providing a

common ground on which to compare and contrast other formal models and establishing a basis for

new tools and programming techniques.

110

References

References

1. Agha, G. and Hewitt, C., “Concurrent Programming Using Actors,” pp. 37-53 inObject-

Oriented Concurrent Programming, ed. Akinori Yonezawa and Mario Tokoro, MIT Press, Cam-

bridge, MA (1987).

2. Ahamad, M., Hutto, P. W., and John, R., “Implementing and Programming Causal Distributed

Shared Memory,” GIT-CC-90-49, College of Computing, Georgia Institute of Technology

(1990).

3. Allen, J. R. and Kennedy, K., “A Parallel Programming Environment,”IEEE Software2(4) pp.

21-29 (July 1985).

4. Allen, R. and Kennedy, K., “Automatic Translation of FORTRAN Programs to Vector Form,”

ACM Transactions on Programming Languages and Systems9(4) pp. 491-542 (October 1987).

5. Athas, W. C. and Seitz, C. L., “Multicomputers: Message-Passing Concurrent Computers,”Com-

puter21(8) pp. 9-24 (August 1988).

6. Babb, R. G. and DiNucci, D. C., “Design and implementation of parallel algorithms with Large-

Grain Data Flow,” pp. 335-349 inThe Characteristics of Parallel Algorithms, ed. L. H.

Jamieson, D. B. Gannon, and R. J. Douglass, MIT Press, Cambridge, MA (1987).

7. Beguelin, A. L., “SCHEDULE: A Hypercube Implementation,”3rd Conference on Hypercube

Concurrent Computers and ApplicationsI, Architecture, Software, Computer Systems and

General Issuespp. 468-471 ACM, (January 1988).

111

8. Boyle, J., Butler, R., Glickfeld, B., Disz, T., Lusk, E., Overbeek, R., Patterson, J., and Stevens,

R., Portable Programs for Parallel Processors,Holt, Rinehart and Winston, New York, NY

(1987).

9. Brooks, F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,”Computer

20(4) pp. 10-19 (April 1987).

10. Callahan, D. and Kennedy, K., “Compiling Programs for Distributed-Memory Multiprocessors,”

Journal of Supercomputing2 pp. 151-169 (1988).

11. Carriero, N. and Gelernter, D., “Linda in Context,”Communications of the ACM32(4) pp.

444-458 (April 1989).

12. Chandy, K. M. and Misra, J.,Parallel Program Design: A Foundation,Addison-Wesley, Read-

ing, MA (1988).

13. DeMarco, T.,Structured Analysis and System Specification,Yourdon Press, New York, NY

(1978).

14. DiNucci, D. C., “Design of a debugger for large-grain dataflow programs,” Technical Report

CSE-88-005, Oregon Graduate Center (1988).

15. DiNucci, D. C. and Babb, R. G., “Design and implementation of parallel programs with

LGDF2,” COMPCON’89, pp. 102-107 IEEE, (1989).

16. Dongarra, J. J. and Sorensen, D. C., “A portable environment for developing parallel FORTRAN

programs,”Parallel Computing5(1&2) pp. 175-186 North-Holland, (July 1987).

17. Eswaran, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., “The notions of consistency and

predicate locks in a database system,”Communications of the ACM19(11) pp. 624-633 (Novem-

ber 1976).

112

18. Foster, I. and Taylor, S.,Strand: New Concepts in Parallel Programming,Prentice-Hall, Engle-

wood Cliffs, NJ (1989).

19. Fuggetta, A., Ghezzi, C., Mandrioli, D., and Morzenti, A., “VLP: A Visual Language for Proto-

typing,” IEEE Workshop on Languages for Automation, IEEE, (August 1988).

20. Gopinath, K. and Hennessy, J. L., “Copy Elimination in Functional Languages,”Proceedings of

the Conference on Programming Languages (POPL), ACM, (1989).

21. Guarna, V. A., Gannon, D., Gaur, Y., and Jablonowski, D., “FAUST: An Environment for Pro-

gramming Parallel Scientific Applications,”Proceedings Supercomputing ’88, pp. 3-10 IEEE

and ACM SIGARCH, (November 1988).

22. Hoare, C. A. R.,Communicating Sequential Processes,Prentice-Hall, Englewood Cliffs, NJ

(1985).

23. Jones, G. and Goldsmith, M.,Programming in occam 2,Prentice-Hall (1988).

24. Jordan, H. F., Benten, M. S., Alaghband, G., and Jakob, R., “The Force: A Highly Portable Par-

allel Programming Language,”Proceedings of the 1989 International Conference on Parallel

ProcessingII - Software pp. 112-117 Penn State, (August 1989).

25. Kahn, G. and MacQueen, D. B., “Coroutines and Networks of Parallel Processes,”Proc. IFIP

77, pp. 993-998 North Holland, (August 1977).

26. Kaplan, I., “Programming the Loral LDF 100 Dataflow Machine,”ACM SIGPLAN Notices

22(5) pp. 47-57 (May 1987).

27. Karp, A. H. and Babb, R. G., “A comparison of 12 parallel fortran dialects,”IEEE Software, pp.

52-67 (1988).

28. Knuth, D. E.,The Art of Computer Programming: Volume 1/Fundamental Algorithms,Addison-

Wesley, Reading, MA (1975).

113

29. Li, K. and Hudak, P., “Memory Coherence in Shared Virtual Memory Systems,”Proceedings of

the Fifth Annual ACM Symposium on Principles of Distributed Computing, pp. 229-239 (August

1986).

30. McGraw, J., Skedzielewski, S., Allan, S., Oldehoeft, R., Glauert, J., Kirkham, C., Noyce, B., and

Thomas, R., “SISAL: Streams and Iteration in a Single Assignment Language: Language Refer-

ence Manual, Version 1.2,” M-146, Rev. 1, Lawrence Livermore National Laboratory, Liver-

more, CA (March 1985).

31. Merrow, T. and Henson, N., “System Design for Parallel Computing,”High Performance Sys-

tems, pp. 36-44 (January 1989).

32. Milner, R.,A Calculus of Communicating Systems,Springer-Verlag, Berlin (1980).

33. Muhlenbein, H., Kramer, O., Limburger, F., Mevenkamp, M., and Streitz, S., “MUPPET: A Pro-

gramming Environment for Message-Based Multiprocessors,”Parallel Computing8(1-3) pp.

201-221 (October 1988).

34. Noe, J. D. and Nutt, G. J., “Macro E-Nets for Representation of Parallel Systems,”IEEE Trans-

actions on ComputersC-22(8) pp. 718-727 (August 1973).

35. Papadopoulos, G. M. and Culler, D. E., “Monsoon: An Explicit Token-Store Architecture,”Proc.

17th Annual Symposium on Computer Architecture, Computer Architecture News18(2) pp.

82-91 ACM, (June 1990).

36. Peterson, J.,Petri Net Theory and the Modeling of Systems,Prentice-Hall, Englewood Cliffs, NJ

(1981).

37. Pratt, V. R., “Modeling Concurrency with Partial Orders,”International Journal of Parallel Pro-

gramming15(1) pp. 33-71 (February 1986).

114

38. Sabot, G. W.,The Paralation Model: Architecture-Independent Parallel Programming,MIT

Press, Cambridge, MA (1988).

39. Sobek, S., Azam, M., and Browne, J. C., “Architectural and Language Independent Parallel Pro-

gramming: A Feasibility Demonstration,”Proceedings of the 1988 International Conference on

Parallel ProcessingII, Software pp. 80-83 Penn State, (August 1988).

40. Suhler, P. A., Biswas, J., and Korner, K. M., “TDFL: A Task-Level Data Flow Language,”

TR-87-44, University of Texas, CS Dept., Austin, TX (November 1987).

115

Biographical Note

David DiNucci was born in Portland, Oregon on January 13, 1957. He attended Centennial High

School in Gresham, Oregon, graduating in 1975. He then attended Portland State University until

1981, receiving a Bachelor of Science Degree in Computer Science. During his stay at PSU, he

worked in the computer center as student consultant, computer operator, and programmer. He also

worked for one summer at the Harris Corporation in Fort Lauderdale, Florida.

After leaving PSU and spending 4-months in Japan, he took a position with the Portland School Dis-

trict’s Research and Evaluation Department, and shortly thereafter married Tamae Sawano. In 1985,

after advancing to the position of Data Systems Coordinator, he left the School District to attend Ore-

gon Graduate Institute (then Oregon Graduate Center) full time.

The author is leaving Oregon Graduate Institute to take a summer Post-Doctoral appointment at

Lawrence Livermore National Laboratories.

The dissertation "A Formal Model for Architecture-Independent Parallel Software Engineering" by

David Carl DiNucci has been examined and approved by the following Examination Committee:

Robert G. Babb II
Thesis Advisor
Associate Professor

Richard B. Kieburtz
Professor, Department Head

Michael Wolfe
Associate Professor

Harry F. Jordan
Professor
University of Colorado at Boulder

Dedication

To Tamae, who did not deny her faith

in the most difficult of times

To my father, who demonstrated how to get the job done

To my mother, who showed me what it means to never quit

i

Acknowledgements

I would like to acknowledge the students, staff, and faculty of Oregon Graduate Institute for their

support. In attempting to keep one foot in theory and another in practice, I have relied on their exper-

tise and experience in both camps. I would especially like to thank Robbie Babb for keeping me

apprised of the needs of the parallel processing community and Michael Wolfe for his support and

example. I would also like to thank the other members of my committee for their assistance, Dick

Hamlet for his excellent guidance in the early stages of this work, Steve Otto and Doug Pase for inspir-

ing discussions, and the many others (including "the gang") whose friendship helped to make my stay

at OGI an enjoyable experience.

ii

Table of Contents

1. Algorithms for Parallel Architectures ... 1

2. Related Work ... 14

2.1. Introduction .. 14

2.2. Shared Memory and Message Passing ... 15

2.3. Parallelizing Compilers .. 16

2.4. Linda .. 17

2.5. Unity ... 18

2.6. Reactive Kernel .. 19

2.7. Specification Languages .. 19

2.8. Dataflow Languages ... 20

2.9. Coarse Grain Data Flow ... 21

2.10. Actors ... 21

2.11. Strand ... 21

2.12. Paralation .. 22

2.13. Synchronous Models .. 22

2.14. Historical Perspective ... 23

3. F-Nets .. 24

3.1. Introduction .. 24

3.2. Building the Model .. 25

3.2.1. Architecture-Independent Ether Model .. 25

3.2.2. Separability ... 30

3.2.3. Independence of Number of Processors .. 32

3.2.4. Sample Problem .. 33

3.3. Higher Level Characterization ... 35

3.3.1. Instruction Specifications .. 36

3.3.2. Ensuring That Signatures are Correct ... 38

3.3.3. Multiple Readers and Buffering in Ether .. 38

3.3.4. Instructions Performing the Same Operation .. 40

3.3.5. Final Version of Sample Problem ... 41

3.4. Final Notes ... 43

4. Axiomatic Semantics and Formal Results .. 45

4.1. Introduction .. 45

4.2. Syntax ... 46

4.3. Semantics ... 49

4.3.1. Form of an Execution Graph ... 50

4.3.2. Axioms Constraining Execution Graphs ... 51

iii

4.4. Execution Graphs as Partial Orders ... 54

4.5. Execution Graphs as Computations ... 56

4.6. Tracing an Execution ... 57

4.7. Execution Graphs with Identical Logs are Isomorphic .. 61

4.8. Tow ard Provinĝex = êx′ .. 64

4.9. Conclusions .. 67

4.10. Final Note on the Effects of Order (Size of Control Domain) ... 67

5. Comparison with Other Models .. 70

5.1. Unity ... 70

5.2. Petri Nets .. 70

5.3. CCS .. 73

5.4. Functional Models .. 73

5.5. Guarded Commands ... 74

5.6. Graphical Specification Languages .. 74

5.7. Imperative Sequential Programs .. 75

5.8. Conclusion ... 76

6. Implementation ... 77

6.1. Introduction .. 77

6.2. Definition of a Valid Implementation ... 77

6.3. A Generic Implementation ... 79

6.3.1. Concrete F-Nets .. 80

6.3.2. Abstraction of Concrete F-Nets .. 81

6.3.3. Concrete Execution Graphs and Their Abstraction .. 84

6.3.4. Concrete Implementation .. 84

6.3.4.1. Strategy .. 84

6.3.4.2. Validity of Implementation Strategy .. 87

6.3.4.3. Pseudo-code for the Generic Implementation .. 89

6.4. Optimizing Concrete Execution for Differing Architectures ... 94

6.4.1. Shared Memory ... 94

6.4.2. Message-Passing ... 96

6.4.3. Final Implementation Notes .. 98

7. Future Directions and Conclusions ... 100

7.1. Introduction .. 100

7.2. Extensions to F-Nets .. 100

7.3. Software Tools .. 102

7.3.1. Debugging/Monitoring Tools .. 102

7.3.2. Parallel Restructuring Tools .. 103

7.3.3. Real-time Programming .. 105

7.4. Parallel Architecture ... 105

7.5. Conclusion ... 107

iv

Table of Illustrations

Figure 3.1 First Attempt at the Sample Problem .. 29

Figure 3.2 Second Attempt at Sample Problem .. 35

Figure 3.3 Final Diagram of Sample Problem .. 37

Figure 4.1 Node Labels for Execution Graph ... 51

Figure 4.2 One Execution Graph for the Sample F-Net .. 52

Figure 4.3 A New Sample F-Net ... 59

Figure 4.4. An Execution Graph for F-Net in Figure 4.3 .. 61

Figure 4.5. Comparable Order-4 and Order-2 F-Nets ... 68

Figure 5.1. F-Nets Modeled as Petri Nets ... 71

v

Abstract

A Formal Model For Architecture-Independent

Parallel Software Engineering

David C. DiNucci, Ph. D.

Oregon Graduate Institute, 1991

Supervising Professor: Robert G. Babb II

In the absence of a unifying model to describe parallel algorithms, existing architectures have served as

the models. The resulting algorithms, expressed as sets of sequential processes which communicate

via shared memory or message passing, are non-portable, and the component processes cannot be

implemented according to an input-output specification alone. Determining the set of computations

represented by such an algorithm often requires no less than simulating their execution. This disserta-

tion develops a model, F-Nets, for expressing parallel algorithms in a manner which avoids many of

these difficulties. Both high- and low-latency communication are efficiently accomodated, and pro-

cesses can be implemented in any deterministic language. The possible effects of each process is com-

pletely determined by the input-output mapping it implements. Computations are defined as partial

orderings of these process executions, and algorithms are represented graphically as folded computa-

tions. A formal axiomatic semantics is provided for unfolding algorithms into computations, as is an

operational semantics which is used to describe efficient implementations of the model on various

architectures. Some final observations and predictions are made for future work based on the model.

vi

