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Abstract exploit the properties of that model. To facilitate the needs
above, the model must be tolerant of, but not dependent
upon, the sharing of memory or the passing of messages.
Likewise, it must be adaptable to different languages, dif-
ferent architectures, different amounts of parallelism
(including none at all), and the possible presence of non-
determinism.

The objective of this paper is to present a tolerant
approach to software engineering. That is, rather than engi-

to provide a suitable framework for building tolerant pro- neeripg a product for a par_ticu!ar parallel environmgnt, the
grams. Finally, Software Cabling (SC), a very-high-level goal is to engineer one which is tolerant of many different
) ' ' environments, including parallel environments. The paper

raphical programming language, demonstrates how many . ' . . .
grap brog g 'anguag yW|II first describe the full meaning of tolerant program-

of the features normally expected from today’s computer . . .

languages (e.g. data abstraction and data parallelism) canMn9. then wil present a simple yet fo".“a' model f.or (par-

be obtained within the F-Net paradigm. allel) .computatlon, called F-Nets, Wh|ch_ embodies that
meaning and thereby serves as the basis for other tools.

) Then, a very-high-level graphical programming language,

1. Introduction called Software Cabling (SC), is presented as a case study

to demonstrate that the F-Net approach can be used to
The subgoals of parallel processing are very similar toapproach real-world problems.

the subgoals of software engineering in general—i.e. the

decomposition of a large problem into smaller tasks or2, Tolerant Programming

modules, the precise expression of the scope of data and

the semantics of sharing and communicating data effi- Athough the term “tolerant programming” could be

ciently and safely between modules. In fact, differentiating ysed to describe tolerance to any number of traits, those

parallel software engineering from traditional software covered here are concurrency, latency, semantics, changing

engineering can be a mistake, since doing so may lead ongnyironment, bugs, and language. Tolerance of these traits

to believe that a parallel program is engineered in a differ-yefers to the ability of a program or programming method-

ent (and perhaps even more roundabout) way than a *realp|ogy to work well independently of the values of these

program. Parallel software engineering will only come into trajts. Some techniques which might be used to obtain tol-

its own when parallel programs are considered “real”, anderance are described below, but tolerance may be achieved

the ability for a program to run efficiently on a parallel through either user effort or automatically through tools

machine is just another desirable feature which the softe g compilers). In fact, tolerance often relies on the ability

ware possesses. A corollary is that tools, languages, angh infuse the program with potentially useful information,

methodologies for “parallel” programming must be useful ang this may not be possible without the aid of tools.

enough to facilitate any kind of programming.

This may seem like a lot to ask. After all, parallel soft- 2.1. Concurrency

ware engineering seems to lag behind sequential in virtu-

ally every area: formal models, languages, tools, and Concurrency tolerance refers to providing the opportu-

development and debugging strategies. Of these, formahity for scaling while not sacrificing efficiency on less-

models constitute the linchpin. With an adequate formalscalable platforms. For example, a large program can be

model, the other methodologies can be developed todecomposed into relatively small parts which may be able
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In order to be truly portable, a program must be tolerant
of a wide range of development and execution environ-
ments, and a parallel program is just one which must be
tolerant of a very wide range. First, the term “tolerant pro-
gramming” is defined. Then, a formal model called F-Nets
is described in which parallel algorithms are expressed as
folded partial-orderings of operations, and this is argued



to execute concurrently, but there should also be a mechaenvironments where loads or processor speeds vary. It is
nism to efficiently recompose these into larger portionsimportant, however, to ensure that non-determinism does
when parallel execution is not possible. not sneak into the design accidentally.

To express program decomposition, constructs which are
well defined and easily understood in both sequential and2.4. Changing Environment
parallel environments should be used. Traditionally, loops
have filled this role, but there are better examples, such as Changing Environment tolerance refers to adaptation to

functions and atomic transactions. an environment which changes as the program is running.
Environment Tolerance includes the well-known Fault Tol-
2.2. Latency erance, which is tolerance to processors which are made

unavailable in an abrupt and unannounced fashion, but it

Latency tolerance refers to the ability to adapt to high- also includes tolerance to any circumstances when proces-
latency environments without impacting efficiency in low- sors leave in a pre-announced and well-defined way, and/or
latency environments. Such tolerance is gained primarilywhen processors become available which were not previ-
by providing information about the expected data move-ously present. This tolerance takes that the computer(s)
ment patterns. For example, whenever possible, the prowill likely be shared by many users, so the programming
grammer should: and/or scheduling method should allow for efficient shar-

1) Express need for data long before it is used (anding of limited resources.
maybe even before process starts running—i.e. staging),

2) Express where newly created or modified data will be 2.5. Bugs
used next, even before it is requested there,

3) Refrain from waiting for last version of data to be  Bug tolerance relates to the provision of adequate
consumed before creating next version (i.e. queueing), debugging tools and mechanisms which provide the ability

4) Block (group) data to allow multiple data items to to find bugs and which limit the scope of bugs if they exist
move as a unit whenever it is requested or forwarded, thus0 that a small bug in one part of the program will have

cutting latency/byte, limited effects in other parts. This includes the ability to
5) Pipeline computation. find unwanted nondeterminism and to efficiently record
desired non-deterministic choices made during execution

2.3. Semantics of a parallel program so that it can be reliably debugged

and analyzed in a cyclic manner.

Semantic tolerance refers to the recognition that differ-
ent environments may have different default semantics, s@.6. Language
the desired semantics (or lack thereof) should be clearly
expressed. For example, shared memory and message passLanguage tolerance describes the ability of a program-
ing are different standard semantic combinations for com-ming methodology to retain its utility even when the spe-
munication, and using one combination globally cific programming language used for implementation
throughout the program can make the program much lesshanges. This allows the implementor the flexibility to use
efficient in an environment which implements the other by the appropriate language for the job, or to change the lan-
default. A better approach is to delineate the application’sguage for any number of reasons, without requiring totally
semantics for each data communication, so that thedifferent engineering methodologies.
required semantics can be implemented in the most effi-

cient way in the available environment—e.g. 3. F-Nets
1) Destructive read (i.e. read on non-empty, dequeue)
2) Destructive write (i.e. standard over-write) This section will informally describe a model for paral-
3) Non-destructive write (i.e. enqueue), or lel computation called F-Nets. Although this model is not
4) Non-destructive read (i.e. standard read) widely known, it is similar in many ways to Petri Nets[10],

In some cases, it is appropriate to express the lack of &uring Machines, Finite State Machines, dataflow, and
specific required semantics, especially as it relates to th&€CS[9], all of which are well known. It was originally
ordering of operations. For example, a designer may notdeveloped as a refinement of the Large-Grain Data Flow
care about the order in which some commutative arithmetic(LGDF) parallel programming approach[1], and early ver-
operations are performed, nor perhaps the order in whictsions went by the name LGDF2 [6]. A full, formal descrip-
some outputs are produced. Such an expression of acception is available[5], but the informal English description
able non-determinism may make a program run faster inwhich follows will be sufficient to illustrate the value of the
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model.

The model will be described in six parts: its syntax, an
operational semantics, an axiomatic semantics, its relation-
ship to other models, its efficient expression on real com-
puters, and some practical and theoretical properties it
possesses which relate to tolerant programming.

3.1. Syntax

An F-Net can be considered as being similar to a Turing
Machine, having a (possibly-infinite) tape, separated into
squares Each square contains a mutable value, called the
data stateof the square, and a mutable color, calledats
trol state Call the set of all possible data stees Table 1. Sample Firing Function for Transition W

Along with the tape, the F-Net consists of a possibly- ¢olor ¢. In the example, head 2 of W could be declared
infinite set oftransitions Associated with each transition is  «pregictable green”.

a set of colored (non-whitd)eads Each head is perma-

nently attached to one square—i.e. the tape does not movg o Operational Semantics

relative to the heads. Each head is eithezaal head, a

write  head, aread-write head, or odata head An F-Net works as follows. The machine begins in an

(i.e. a head having neither read nor write capability). The; iia| state consisting of a predetermined symaogl and

heads for a given transition are enumerated from i, t0 0 olor green on each squareThen, repeatedly, ready

wheren can be different for each transition. No two heads yansition is located (subject to thigeness/faimessule

from the same transition are attached to the same square. Eblow) andevaluateduntil there are no more ready transi-

figure 1, the transitions are shown as circles, the heads ag,ns ‘A ready transition is defined as one for which each

lines, and the colors as shadings (green shown as blackheaq is the same color as the square to which it is attached.

Arrowheads represent whether the headesd (at the  gyq1yation (orfiring) consists of finding the entry in the

transition end)write  (at the tape endyead-write table corresponding to the symbols under rit@d and

(at both ends), anodata. (neither end). read-write heads, and replacing the color of the
squares under all heads with the color of the corresponding
symbol from the table entry. For each write and read-write
head, the symbol (i.e. data state) of the square is also
changed to the corresponding symbol from the table entry.

————— The liveness/fairness rule states that if a transition is

————— ready, then either it or some other ready transition which

shares a square with it must be evaluated eventually (i.e.

will not be eternally preempted) in the repeat cycle

described above.

Note that foread andnodata heads, the symbols in
the table serve no purpose other than as place-holders for
the color at those positions, and that for predictable heads,

Each transition has an associafieig function which  even the colors in the table are superfluous. Note also that
can be visualized as a table. If the numbereaid and if any square becomes colored white during the course of
read-write  heads on the transition isthen the table  an F-Net execution, no transitions attached to that square
hasr!S entries, indexed by the possible combinations of will ever be ready again, since heads cannot be white.
symbols under those heads. Each entry contagwdored There is no need to consider the relative position of
(or white) symbols—i.e. one symbol corresponding to eachsquares on the tape, so F-Nets are often represented graph-
head. Table 1 shows a sample firing function for transitionjca|ly with the squares separated into disjoint rectangles.
W in the previous example, assuming Se=x{i ,t }. Although the firing function is rarely represented graphi-

Any read or nodata head can be declared “predict- cally, the colors which might be assigned to each head are
ablec” which is a declaration that the symbol correspond- often represented by colored dots near the connection
ing to the head in all of the firing function entries has the between the line (head) and the tape square (rectangle).
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Figure 1. Sample F-Net in the Turing Machine styl €



Read andnodata heads with only one colored dot are and n outgoing edges, numbered 1 rip where

implied to be predictable. In a black and white medium each edge numberedwill be attached to a state
such as this, colors are sometimes represented by adding a node corresponding to the tape square under head
“/ ¢” suffix to the colored entity (i.e. dot, head, or within i of transitiont.

the firing function), where represents the color (egfor (b) The control state labeling of each state node
green,b for blue,r for red). See figure 2 for a more stan- attached to an incoming edge numberedll be

dard representation of the F-Net from figure 1. the same as the color of heaaf transitiont.

(c) If headi of transitiont is anodata or read
head, then the state nodes attached to edges num-
beredi will have the same data state labels. The
data states of the state nodes on all other edges
and the control states of the outgoing edges will
correspond to a single line in the firing function

) 1 1 4 table of transitiont, where the incoming edges
correspond to the “index” columns and the outgo-

I!. oo [“e] [ o] ® | ing edges corresponds to the “content” columns.

Figure 2. Same Sample F-Net in Standard Form Liveness: If there is some transitionand some set of

state nodes corresponding to the tape squares under
the its heads such that the control state labeling of
each state node corresponds to the color of the head

Instead of describing an F-Net as an operational of transitiont attached to that square, then at least
machine-like entity, it can be described as a means of  ©ne of those state nodes must have an outgoing edge.
parameterizing the set of computations which may be pro- Time: The graph will be acyclic.
duced by the F-Net. The specification of the semantics then See figure 3 for an example of an execution graph for the
becomes a description of this parameterization—i.e. aF-Net in figure 2. By removing the state nodes from the
characterization of the computations which can be pro-€xecution graph (merging the two edges on each into a sin-
duced by a given F-Net. Here, this characterization will gle edge), the execution represents a partial ordering of
take the form of a set of axioms. operations (where each operation is a transition firing func-

An F-Net computation takes the form of a directed tion), or identically, a single function which is the composi-
bipartite graph which is effectively a trace of the execution tion of each of the involved firing functions.
which would result from executing the F-Net using the 5342'¢
operational semantics in the previous subsection and 2

3.3. Axiomatic Semantics

. . . 1]
circles) connected by directed numbered edges (lines). / &

Each state node corresponds to a tape square in the F-Netg k&
and each firing node corresponds to a transition in the F- Figure 3. Sample execution graph (partial)

Net. Each state node is labeled with a control state (i.e.

color) and a data state (from S). The axioms which con-3.4. Relationship to Other Models

strain the computation follow:

Initial Conditions: Each tape squargin the F-Net will The description of the F-Net model above was based
be represented by at least one state node in the conleosely on the Turing Machine. In fact, it is more properly
putation graph from which any other state node for interpreted as a TM coordination model—i.e. each transi-
tape squarg can be reached by following directed tion can be considered a TM, and each F-Net square can be
arcs. This node will have a control state labeling of considered as a TM tape being passed from one TM to
green and a data state labelingrgf another. The next subsection will go into more detail on

Atomicity: Each state node in the computation graph how this interpretation influences implementation on tradi-
will have at most one incoming edge and at most onetional computers.

outgoing edge. A kinship between F-Nets and Petri Nets is suggested by
Firing: If transitiont in the F-Net has heads, then for  the similar appearance (though the notations are confused).
every firing node corresponding to transitton Specifically, an F-Net with onlgodata heads (and there-

(a) There will ben incoming edges, numbered 1o fore only predictable heads, since each firing function can



contain only a single table entry) can always be expressedtate of each square is implemented as a standard data
as a Petri Net by mapping each F-Net transition to a Petristructure. This leaves only the colors (i.e. control state) to
Net transition and each F-Net squar@ teetri-Net places, be handled in a somewhat non-standard manner.

wherep is the number of colors which the square might When a transition fires, the data state of the squares
assume. Each head in the F-Net becomes two arcs in thender the transition’s heads are passed to the subprogram
Petri Net: an input arc from the place representing the coloras arguments. Althougtodata heads can be neither read

of the head, and an output arc to the place representing theor written, they are also supplied as a special kind of argu-
predictable color which the head assigns to the square. Thenent. At any time during the execution, the subprogram
initial marking of the Petri Net is with one token on each can execute a special statement, of roughly the form
“green” place. The ability to represent more complex F- give square color

Nets as Petri Nets depends upon the ability to represenfyhich declares that the subprogram will make no further
each of the firing functions, which may not be useful, nor accesses to argumesguare , and that the square should
even be possible in the general case where some of the fige assigned the new coloolor . By executing one such

ing functions are partial recursive and/or S is infinite. statement for each of its arguments (|e Squares)’ the sub-

The presence of data in the F-Net model also makes iprogram expresses a mapping from the initial state of its
similar to dataflow or functional models. However, unlike read and read-write squares to the final state obéd
these models which utilize simple arcs that are usually rep-andread-write squares and the new color for all of its
resented with single- (or zero-) assignment variables withinsquares, as it is required to do by the formal F-Net seman-
languages, the squares in an F-Net represent updatablgcs. If a transition subprogram does not executgva
containers more like traditional imperative variables. Also, statement for some of its arguments, those squares effec-
F-Nets more naturally accommodate non-determinism.  tively become white.

Each square in an F-Net can be considered as a finite The word “repeatedly” in the semantics (third sentence)
state machine (with the state represented by the colorsuggests that only one transition can be evaluating at a
which also carries data, and these are interconnected witkime, but this leads to both practical and theoretical prob-
(partial) functions or Turing Machines. This suggests simi- lems. Practically, requiring sequential execution obviously
larities and differences between F-Nets and Milner's CCS.decreases the model’s value in the realm of parallel pro-
Both can be considered as composing finite state machinegessing. Theoretically, sequential execution would require
and upon atomic events which occur only when the stateshat a scheduler know when the evaluation of a transition
of different machines occur in pre-determined combina- subprogram was finished so that it could know that the next
tions. In both, these events in turn cause or allow each ofeady transition could be initiated. This means that, at
the involved machines to perform a transition. However, in every point in time, the scheduler would be required to
CCS, data transformation events are coupled with thedecide whether further evaluation of the subprogram might
machine transitions, whereas in F-Nets, they are coupledead to execution of morgive statements (i.e. for argu-
with the atomic events between the machines. It seemsnents for which they had not already been executed). In
plausible that CCS theory could carry over to F-Nets. other words, a correct sequential scheduler would be

By restricting F-Nets to use only green control states, arequired to either solve the (impossible to solve) halting
model similar to Unity[2] emerges. Guards in the latter are problem, or to conceivably let subprograms which never

effectively replaced by control states in the former. executegive statements for some arguments execute for-
ever and thus contradict the required liveness properties.
3.5. Real-World Implementation Fortunately, the operational semantics in subsection B

can be shown to be identical to these revised semantics:
To understand how the F-Nets model pertains to tolerant “An F-Net works as follows. The machine begins

programming, it is first important to understand how its in an initial state ... . Then, repeatedly, a ready
components manifest themselves in the real world. Only transition is located animitiated. A ready transi-
two such components will be discussed here: the firing tion is .... . Initiation means changing the color of
functions and the tape squares. The remainder of the F-Net  all the squares under the transition’s heads to
is typically represented in the same graphical form previ- white, and then beginning evaluation of the transi-
ously described. tion. Evaluation ...”

In a standard computer, the firing function of each tran- In this case, the scheduler does not need to wait for one
sition of an F-Net is normally implemented as a small transition to finish its evaluation before initiating the next.
deterministic (usually sequential) subprogram. That is, A database theorem about two-phase transactions[8] guar-
instead of being a table, the function is represented by thentees that the transactions here will still act atomically by
mapping of inputs to outputs implied by the code. The datavirtue of first acquiring all of their resources (i.e. changing



all of its squares to white, effectively locking them), and algorithm to express a particular sequential computation is
then relinquishing them (i.e. giving them a color). a “straight-line” algorithm which performs each of the
Although the theorem does not rule out deadlock, theoperations in the proper order, but the power of program-
semantics here do so by ensuring that only one transition isning is obtained by “folding up” and compacting this
initiated at any one time. It could also be ensured bystraight-line algorithm with loops and conditionals. During
enclosing initiation in a critical section covered by a lock, execution, such a “folded up” algorithm both performs the
or by changing the color of the tape squares to white in aoperations designated therein and unfolds into a sequence

predetermined global order. at the same time, and the unfolding itself can be affected by
Predictable heads provide ample opportunity for optimi- the inputs provided to the algorithm.
zation. Since onlyead andnodata heads are predict- Similarly, a parallel computation is often considered as a

able (by definition), the new data state and control state foipartial ordering of operations [11]. However, the term “par-
the associated square is known the instant the transitiomllel algorithm” has heretofore not had a very formal defi-
fires. This means that the scheduler itself cargpre- the nition. An F-Net algorithm is an almost perfect analog to a
square a color during scheduling and thereby immediatelysequential algorithm—i.e. it is a folded up partial ordering
schedule other transitions which become ready as a resultof operations, which is unfolded as it is executed. This
The control state (color) of each square is implemented‘folded partial ordering” description explains why F-Nets
as internal state which allows a scheduler to determineare represented most naturally as graphs.
which transitions to schedule. It is often most efficient to  Unlike sequential algorithms, some F-Net algorithms
distribute this control state among the transitions. That is;may unfold into different partial orderings, even when
rather than representing the control state of each square igiven the same inputs (or in this case, initial markings).
a particular location, each transition is giverreasons  This nondeterminism is a desirable characteristic, as
count—i.e. an integer which describes the number of thedescribed earlier under semantic tolerance, as long as it is
transition’s heads which are over the wrong color of not introduced by accident. Potential non-determinism in
square. Each time a transition is initiated or executes an F-Net can be detected syntactically, so tools can allow
give statement, the appropriate reasons counts arehe user to verify that it is desired. Specifically, an F-Net
adjusted (within a critical section), and new transitions aremay be non-deterministic if and only if it contains two (or
scheduled (i.e. initiated) whenever their reasons countamore) transitions which have like-color heads on the same
reach zero[7]. square (sagl) and those same transitions do not have dif-
In distributed memory environmentgive statements fering-color heads on another “shared” square &3y
associated witlvrite  orread-write  heads often map  The non-deterministic choices made during execution can
straightforwardly into messagend s which pass the data be recorded efficiently by just recording the order in which
state associated with the square to the next process that wilhe stated transitions fire—i.e. one bit recorded for each
read it. There are, however, some circumstances where thexecution of the offending transitions—and this informa-
next process to read the data cannot be immediatelyiion can be used during debugging to ensure repeatability.
known. In that case, the data state can either be left with the Language tolerance is achieved in F-Nets because the
transition to be requested later when the reader is finallymodel requires only that each firing function represent a
determined by the scheduler, or it can be forwarded to adeterministic mapping from some set of data values to
location which is physically closer to all potential readers. some new set of data values and to a color for each head.
A simple subroutine package, called Cooperative DataThe representation of this mapping is not restricted: e.qg. it
Sharing (CDS), embodies the communication requirementsan be in the form of an imperative subroutine, as
of F-Nets without the dataflow-like execution seman- described, or in terms of a functional, dataflow, or logic
tics[4]. In addition to serving as a basis for the implementa-program fragment (though these paradigms may be unable
tion of F-Nets, it also serves as a standard communicatioio take advantage of F-Nets’ update-in-place capabilities to
substrate for a variety of other purposes, similar to PVM orgain maximum efficiency). This provides maximum flexi-
MPI except that it avoids all copying in low-latency shared bility to use any language, and even to use different lan-

environments. guages for different transitions.
The fact that each transition represents a simple map-
3.6. Tolerance and Other Properties of F-Nets ping, independent of anything else going on at the time, is

indicated by the (first) semantics. That is, even though tran-

The visual nature of F-Nets springs from the nature of sitions may execute concurrently, they must act as though
computation and the relationship between algorithms andhey are executing one by one. This not only provides con-

computations. In the sequential world, a computation iscurrency tolerance, since the constructs being used have
usually defined as a sequence of operations. One possiblidentical behavior in parallel and sequential environments,



but also bug tolerance, since errors in implementing a tran-desirable properties of the F-Nets model while compensat-
sition can only lead to errors in the mapping represented byng for some of F-Net’s apparent practical deficiencies.
that transition. Moreover, since the semantics of the lan- The terminology which is used to describe SC is based
guage used to implement the transitions does not signifiupon a hardware analogy. In the first subsection, terminol-
cantly change in a parallel environment, standardogy and representation of the basic constructs will be
sequential debugging tools can be used to debug the transgescribed. Subsequent subsections will describe modular-
tion mappings. This is in marked contrast to traditional ization, first-class modules, objects, templates, arrays, and
shared-memory or message-passing programming, wherdata parallelism.
the behavior of any one program or program fragment can
only be described by including the possible asynchronous4.1. Basics
arrival of messages and/or data, and therefore by including
all possible global states of the system. An SC program is constructed mibdules Each module
F-Nets achieve latency tolerance through all of the tech-has abody which tells it how to act, and anterface
niques mentioned in the previous section. Since each tranthrough which it interacts with its environment. The inter-
sition is endowed with the knowledge of the data that it face consists of one or mapens each with a name, a per-
will need to perform its task, this data can be forwardedmission (ead , write , read-write , or nodata ), a
(staged) by the scheduler in a dataflow fashion to the prodata type, and a list of identifiers calledignal set There
cessor which will execute the firing function, even before are two kinds of moduleshipsandboards
the function executes. Latency is amortized by communi- A chip can be considered as a custom CPU chip, and is
Ca‘[ing an entire tape square (WhICh could Comprise a |argéhe only construct in SC which transforms data. As with an
data Structure) at a time, |eaving ﬁne_grain access to itd-Net transition, its bOdy is constructed with tools outside
components to occur in a low-latency environment. the realm of SC, but SC depends upon each chip acting in a
Queuing Of mu|t|p|e Versions Of a tape Square iS a|sospeciﬁc deterministic Way When |n|t|ated The Ch|p must
supported by the model, due to predictable heads. Suppo§@itialize all of its internal data, then read one data item
that one transition has a green “predictable resd from each of its read or read-write pins, then compute for
head on a tape square, and another has aritd head some amount of time and write one data item to each of its
on the same Square Wh|Ch Changes the C0|0r to greemlrite and read'Write pinS. In addition, for eaCh Of |tS pinS, |t
When the first transition fires, the scheduler can immedi-must post a signal from the signal set of that pin. (If a sig-
ately change the square color to red, allowing the writingnal is not posted for a pin, a special “bottom” signal is
transition to execute again even while the reader continuegmagined to be posted.)
to execute. Of course, in this case, the scheduler must A board can be considered as a flat surface upon which
ensure that the writer uses a separate memory area to cresher components are mounted. The body of a board is
the “next” version of the data state for the tape square.  SPecified in a schematic-like diagram. The primary role of
Transitions are very tolerant to both concurrency and@ board is to specify how other modules which are mounted
dynamic environment considerations due to their atomic,UPon it will interact.
stateless properties. Specifically, by ensuring that each The two basic components which are permanently
transition is relatively small, an algorithm can expand into Mounted upon boards are calkmtketsandmemoriesand
any number of available processors, and problems relateghese are connected iyres
to the loss or migration of execution state can be avoided A Socket is represented in the board diagram as a circle,
by backing out of partially-executed transitions. Neverthe-and is designed to hold a module—i.e. either a chip or a
less, unlike some functional and dataflow models wherePoard. To this end, a socket consists of a set of receptacles,
data must be copied from one actor (function, program,€ach capable of accepting one pin of the module interface.
chare, etc.) to the next, executing multiple sequentially-Each receptacle has a name, a permission, a data type, and
composed transitions on the same processor adds virtuall§ Signal set—just like a pin—and will only accept a pin of

no overhead above a standard subroutine-call interface. ~ the same name, signal set, and (for simplicity) datatype.
The receptacle’s permissions can typically be more general

4. Software Cabling than that of the pin, as shown in table 2. The socket circle is
' labeled with the name of the module inserted into it.

Software Cabling (SC) is a visual programming lan- Receptacle permissionis  Accepts pin with permissions
guage for building very large F-Nets. An SC program reac e reac-wree.read.wiite nocata
effectively compiles into an F-Net while ensuring that the Wiite Wiite
correspondence between the SC program and the F-Net ig nodata nodata

always apparent. This allows SC to inherit many of the Table 2: Kinds of pins accepted in a receptacle



A memory is represented in the board diagram as a rectene i-memory in the board, labeled with the name of the
angle, and is designed to hold one data item and one colopin. The signals from the pin are listed in a small box,
both of which may change during execution. The type of called aposting table which adjoins the i-memory rectan-
data item which a memory may hold is described by a datagle. Each signal name in the posting table has a different
type associated with the memory. The initial data state ofcolor, and none of them are green.
the memory is initialized to standard default values, which  To describe the result of inserting a board into a socket,
can be over-ridden by annotating the memory rectangleit will help to first define some terminology. If board A is
with “=const " where const is a constant—i.e. a literal inserted into a socket on board B, board A is callegtie
numeric, character, or record constant in a standard formmary board, and board B treecondaryboard. Since each
or of the form <name>" in which case the constant asso- i-memory on board A corresponds to a pin of board A, and
ciated with identifier hame’ is found in a repository asso- each pin of board A also corresponds to a receptacle on
ciated with the program (called tpeogram data base board B which is connected by a wire to a memory on

Wires are represented in the board diagram as coloredboard B, there is a correspondence between each i-memory
lines, and they connect each of the receptacles of a sock&mn board A and a wire and a memory on board B. These
to a (different) memory. Each line is labeled with the namewires and memories on board B are called the respective
of the receptacle which it connects, and has arrowheads ttargetsfor the i-memories on board A.
represent the permissions of that receptacle: on the socket The semantics are as follows: In all cases, an i-memory
end forread , the memory end fowrite , both ends for  effectively shares the data state of its target memory. The
read-write  , and neither end fonodata . The signal  control state (i.e. color) of each i-memory is initialized to
set of the receptacle is represented just inside of the membe colorless, but whenever the target memory of an i-mem-
ory rectangle, where the wire connects to it, and each of thery matches the color of the target wire, the i-memory
identifiers in the signal set is colored. itself becomes green. If a module on the primary board

If chips are placed into all of the sockets on a board, the(with a green wire) accesses that i-memory, it not only
semantics are almost exactly those of the F-Net with thesteals the color from the i-memory, but also from the sec-
same appearance. The memories act as tape squares, thhedary memory. When (if) that module posts a signal to
wires as heads, the sockets as transitions, and the chips gs/e the i-memory a new color, SC compares the new color
firing functions. The only difference is that a chip now with the colors of the signals in the posting table. If there is
posts a signal to each pin instead of providing a color, ancho matching signal color, the i-memory retains the new
the new color of the memory is determined by the color of color (as usual), and other modules on the board which are
that signal name in the signal set within the memory. (Bot-attached to the i-memory with wires of that color may fire
tom signals always result in colorless memories.) Thisas usual, but the target memory remains colorless. How-
effectively parameterizes the colors, resulting in the ability ever, if a signal color matches, the i-memory becomes col-
to use a single chip in more varied circumstances than arless once again, and the matching signal is effectively
similar firing function posted through the target wire to the target memory.

Table 2 was designed specifically to guarantee that SC
programs appear as F-Nets, which is the reason that 4.3. First-Class Modules
write  receptacle cannot accephadata pin. If other-
wise, it would be possible to run an experiment that did not The modules (i.e. chips and boards) defined previously
match that of an F-Net—specifically, initializing all of the are not actually immutable objects. Instead, they are
memories for a socket, letting the chip therein execute,descriptors of immutable objects. That is, the user provides
then re-initializing the memories to the same values againa description of the module to create, and the socket actu-
but changing the value for one attached tarige  recep- ally creates it. These descriptors are constants, stored in the
tacle, and letting the chip execute again. The memory orprogram data base along with any other constants the user
thewrite receptacle should end up with the same valuewants to store there. In the cases described above, this sub-
both times, but wouldn't if aodata pin was inserted into  tle difference was not important because each socket was

the receptacle. always given the same descriptor, and each board which
was created remained intact for the remainder of the pro-
4.2. Modularization gram. This subsection describes other cases, where mod-

ules are treated as first-class objects.
So far, there has been no mention of how a board’s inter- Each socket has a special receptacle céitextiule)
face is connected to its body. This is accomplished throughfrom which it reads the descriptor for the module that it is
special memories calléememories(interface memories).  to create. The labeled-circle representation used in the pre-
Specifically, for each pin in the board’s interface, there isvious section is actually a shorthand for this: see figure 4.



modules on the board are able to execute, so the board can
‘ be “garbage collected” by the runtime system.

) A board can be (and is) considered to have logically fin-

@ is shorthand for (module) ished as soon as it has posted a signal tritlule)
=<x> pin, since this allows the board to finish up what it started,
Figure 4. Labeled circle shorthand but does not allow it to start more work. In atomic transac-

When the wire for thémodule) receptacle is the same tion t_erminology,_these semantics ensure that the board is
color as the memory to which it is attached (which it will €ntering a shrinking phase. If the programmer ensures that
always be in the default case above sincedthe signal the board does not enter a second growing phgse_ (i.e. does
and the wire are green), the socket reads that descriptor. ffOt steal color a second time) before posting this signal, the
the descriptor is that of a chip, the socket builds the Chipboard execution can be assured to be an atomic transaction.
and waits for it to become ready, then initiates it. If the A special chip callectopy , provided by SC, increases
descriptor is that of a board, the socket associates the ithe power of this feature, along with being useful in other
memories on the board with their target memories on thecontexts. Theeopy chip has two pins: eead pin called
secondary board as discussed in the last section and creatls, and awrite  pin calledout . Its operation is obvious:
and initializes all of the other memories on the board it reads a data item from its pin and writes the data item
(unless they have been previously created, as will beto itsout pin. Itis better than a user-written copy chip, in
described in the next section). This may, in turn, allow that it can copy any kind of data object, including module
other sockets to construct their modules—i.e. if a newly- descriptors, and it can do so very efficiently (perhaps with-
created memory (or a newly associated green i-memory)ut even performing an extra copy) because the SC sched-
on the board is attached with a green wire fmadule) uler knows the desired result and can therefore optimize.
receptacle for a socket on the board.

The (module) receptacle does not act exactly like 4.4. Objects
other receptacles. Even when the socket reads the descrip-
tor on its module receptacle, it does not actually drain the A board descriptor can be considered as an abstract data
color from the associated memory until and unless thetype, with each socket containing that board being an
resulting module actually has some outward effect on othefinstance of that type, since a board has fixed interfaces,
memories—i.e. drains the color through one of the othermethods (i.e. modules within attached to i-memories with
receptacles of the socket. If another socket changes th@réen wires) which can be invoked by outside actions, and
color of the memory containing the module before the hidden data (i.e. memories) to which they control access.
socket has its effect, the socket must back out and effecBut funneling all accesses for one instance through one
tively pretend that it never tried to execute. Note also thatSocket is extremely cumbersome. What is needed is for a
the (modu|e) receptade is predictab|e by default, and a Single ObjeCt to be usable at different places within a net-
socket will never re-start until the module therein finishes. Work in a concurrent fashion. The first-class modules

By default, boards never finish, but a board is permittedqescfiped in the _Iast section set the stage for this. This sec-
to have an i-memory naméthodule) , and if so, this i-  tion finishes the job.
memory naturally corresponds tqraodule) pin on the Each non-interface memory on each board has an immu-
board. Changing its color to match a signal in its postingtableinstantiation level which is 0 by default but can be
table will have the natural effect of causing the socket con-Specified as some positive integer by the programmer,
taining the board module to post that signal tqrited- shown graphically as a number of lines parallel to one or
ule) receptacle. It will also have one other side-effect: more sides of the memory rectangle. The board itself also
From that point on, no i-memory for the board will ever be has an instantiation level, which is initially set to the maxi-
green again. In other words, if some of the i-memories onmum instantiation level of any memory on the board.
the board are a non-green color at that time, they will con- These instantiation levels are used by a special chip, pro-
tinue to possess that color, and if modules on the boardided by SC, callethstant , which has a singleead-
have stolen color from some i-memories on the board, theywrite  pin calledobject and a datatype of “module”
are free to post signals and return the color to those i-mem¢i.e. a module descriptor). When an instant chip fires, it
ories, but if an i-memory is (or becomes) colorless becauséeads the board module from d@bject pin and finds all
its target memory is the wrong color, then the i-memory of the memories on the board with the same instantiation
will remain colorless from that point on. Once the color on level as the board. It thenstantiatesthese memories, dec-
all of the i-memories of the primary board are effectively rements the instantiation level on the board descriptor, and
stolen back by the secondary board, the primary board willwrites the new board descriptor back out to its pin.
have no further effect on its environment, even if other To relieve any confusion between instantiated boards



and non-instantiated board descriptors resulting from the isx _ _ _ _ _ _ _ _ ___
i "is b N
above paragraph, consider that the control and data states Yb- -———n

[ |
for all memories are kept in a special globally-accessible : : _ : f :
data area called the memory heap. Instantiation then just i r'%z— - I

. . |
corresponds to creation of a memory in the memory heap : : LI_:__EI_ |: Jsmo_ :

and saving the address of this new memory with the mem- B I S
ory rectangle as part of the new (constant) board descriptor. Figure 5. I-sets. isx={isy={b,isz={n,*}},b.f,ism="7}

The constructs described here can be used to facilitat®oard and pin-sets in the board's interface. And, just as
object-oriented programming. First, the programmer Pins on a board fit into receptacles of a socket, pin-sets
assigns an instantiation level of 1 to “instance variable” from a board fit into receptacle-sets of a socket. It is at this
memories, resulting in a board descriptor with an instantia-stage where all unspecified structures become known to
tion level of 1 which serves as a class. To create an objecBC. That is, when a board interface is inserted into a
of that class, the user copies the class to another memor§ocket, that interface is made to conform to the socket,
(usingcopy ) and instantiates it (usirigstant ), which ~ defining any unspecified portions of any pin-sets in the
creates the instance variables and upgrades the cladgterface which in turn defines any unspecified portions of
descriptor to an object descriptor. Any socket which readsany i-sets on the board.
this object descriptor will share the control and data state Cables, which are shown as lines (again, dashed if nec-
for the instance variable memories. Instantiation levels of 2essary to distinguish them from wires), connect the recep-
and greater can be used to repeat this approach in a hieraiacle-sets of a socket to other entities, and thereby the
chical fashion (e.g. for class and superclass variables).  receptacles within those sets to memories. The simplest

such binding is shown by drawing a cable between the
4.5. Patterns and Templates socket and an i-set, in which case the form of the cable
(and therefore the receptacle-set with the same name in the

Programming-in-the-large requires the construction of socket) is inferred to have the same structure as the i-set.
templates or skeletons which describe the interactions offach wire of the cable (i.e. receptacle of the socket) is
individual modules or objects without over-constraining attached to the i-memory of the i-set with the same name,
the form of those modules. The constructs in this subsecand with a signal set identical (in color and name) to the
tion help to address some of those requirements. posting set of the i-memory.

I-memories, wires, pins, and receptacles are all simple Figure 6 shows that cables can also be built up from
atomic constructs. These are actually the degenerate formsdividual cables (including wires) using thendlingcon-
of record-like constructs, callégsets cables pin-sets and struct, shown as a triangle. The cable being built is attached
receptacle-setgespectively, which can fill the same roles. to the apex of the triangle, and the component cables are
So, an i-set is recursively defined as a set of i-sets or a simttached to its base. This construct is unidirectional—the
gle i-memory; a cable as a set of cables or a single wire; &able from the apex must always connect to a socket or the
pin-set as a set of pin-sets or a single pin; and a receptacldase of another bundling.
set as a set of receptacle-sets or a single receptacle. The
power of these constructs is that the programmer does not Q\z
need to fully specify their form: unspecified portions of the
hierarchy are inferred (dynamically) from the current exe-
cution context. Yoo X

An i-set is shown graphically as a labeled rectangular e !
region, as in figure 5. If it is not otherwise apparent, the Figure 6. Bundling wire y and cable x mto cable z
region can be distinguished from a memory rectangle by With these record-like constructs, SC programmers can
being drawn with a dashed line. It encompasses any i-setuild a “template” board, which reads objects or modules
(including i-memories) which it contains. An asterisk from some of its pins and specifies how they should inter-
within an i-set represents zero or more additional unspeci-act to a limited degree, even if the entire interface of those
fied i-sets. An empty i-set rectangle is a special case whiclmodules is not known. Likewise, a module can access part
represents either an i-memory or an i-set containing anyof its interface without necessarily knowing the form of the
number of component i-sets. An imaginary i-set, called entire receptacle-set into which it is inserted. For example,
(iface) , encompasses all other i-sets and i-memories. a socket could pass a hierarchical file system to a module

Just as there is a one-to-one correspondence between by representing each directory or folder as a receptacle set
memories on a board and pins in the board’s interfaceand each file as an receptacle, and a module inserted into
there is the same correspondence between the i-sets on tlige socket needs only to identify the specific items which it



knows about within the corresponding i-set. mary receptacle (to be snooped) to a wire representing the
secondary receptacle (to be accessed using the snooped
4.6. Arrays data). Each arrow is labeled with imadex list(i.e. a list of
small integers), which are prefixed with €' ‘if indicating
Memories within SC, like tape squares within F-Nets, a translation.
can only be accessed by a single chip at a time. This is A selection is very similar to normal subscripting. When
especially troublesome for arrays, since storing the entireghe primary receptacle becomes reatlintegers are read
array in a single memory would greatly restrict parallelism, from it, wheren is the length of the index list on the arrow,
but storing each element in a separate memory can be conand they are used, in order, as indices into the primary
pletely impractical. Neither approach lends itself well to receptacle, as specified by the index list. Put another way,
arrays which change their size dynamically during programeach integer effectively collapses the primary receptacle in
execution, making data parallelism difficult or impossible one dimension, specified in the index list. Multiple selec-
to express. Dynamic memory allocation is also desirable. tions can be specified for the same secondary receptacle as
To address these problems, each memory in SC has along as their index lists do not contain the same values.
associatedlimensionalityexpressed numerically as a non- Specifying all of the indices for the secondary receptacle,
negative integer and graphically as a number of hash markas in figure 7, collapses it to a single element, like normal
in the left side of the memory rectangle. Dimensionality is subscripting. Leaving some indices unspecified results in a
basically a number of dimensions, and memories with secondary receptacle of reduced, but non-zero, dimension-
dimensionality of zero, like all the memories discussed soality. This is not acceptable if the module inserted into the
far, are sometimes callestalars while those with other  socket in the final phase is a chip, since a chip can access
dimensionality are calledrrays Each array consists of an only a finite number of elements, but is acceptable if the
infinite number of elements, and all elements have themodule is a board, since further selections can be per-
same type and same initial data state, but each elemeribrmed on the associated i-memory within the board.
maintains its own control state and data state during execu-
tion. Each element is uniquely addressed by an index
which consists of integers, whera is the dimensionality
of the array. Since i-memories can be arrays, so necessarily
can pins, receptacles, and wires. An array pin conforms to
the size and shape of its array receptacle at insertion. : : b _
To understand how memory array elements are accessed 1gure 7. Selection bindings: scalar from 3 dim.
requires further explanation of sockets. In a previous sec- Any number of indices in the index list for a selection
tion, sockets were described as waiting until tkieiod- can be enclosed in parentheses, in which case two integers
ule) receptacle was ready, then snooping on the memoryrather than one) are read from the primary receptacle for
attached to that receptacle to determine the module to exethat index. Those integers are used as the bottom and top of
cute. In fact, sockets can have mamases(i.e. levels of  an index range. Note that such ranges do not reduce the
snooping), of which reading tifmodule) receptacle and dimensionality of the secondary receptacle, but simply
building and executing the module is the last. Each othedimit the number of elements in the specified dimensions.
phase waits on and reads one or nimary receptacles  These range selections are so useful that SC provides a
and uses the information there to establish the size in eackhorthand for their use, as in figure 8: By attaching one end
dimension of one or morsecondaryreceptacles, and to of a wire to the corner of a scalar memory having a
bind (i.e. connect) wires from the secondary receptacle eledatatype of two integers, and the other end to one of the
ments to memory array elements. A secondary receptacléimensionality hash marks of a memory rectangle, a range
from one phase can be used as the primary receptacle of $election will be performed for the index corresponding to
subsequent phase. Just as before, if any memory attachdtle hash mark for all subsequent accesses to the array
to a primary receptacle is accessed by another modulenemory. If the array is an i-memory, a similar notation
before the socket finishes all of its phases and the newwith reversed arrow) initializes the range memory with the
module therein has some outward effect, then all phasesize of the socket receptacle in that dimension.
effectively start all over again from scratch. This rule  The above description of selections refers to the special
ensures that the socket binding and execution of the modease when the primary receptacle is scalar. In the general
ule therein appear as an atomic action. case, a selection is performed as above using each element
There are two basic kinds bfnding modifiers called of the (finite) primary receptacle, and the results are orga-
selectionand translation These are shown as an arrow nized into an array shaped just like the primary receptacle.
within the module circle, from a wire representing the pri- The dimensionality of the result is therefore effectively

Result: ¢ is scalar receptacle,
bound to element 7,18,14
of 3-dimensional array




theoretical model as a basis, many of the difficulties related
to parallel programming can be surmounted. F-Nets pro-

vides a formal and natural expression for parallel (and

sequential) algorithms, and can serve as a basis for con-
structing tolerant programs in languages like SC.

]
is shorthand for .b
b

] ]

Figure 8. Shorthand for range selections

increased by the dimensionality of the primary receptacle, . ) . )

just as it is decreased by the length of the index list. Ranges The idea of tolerant programming benefited from discus-

are not allowed with non-scalar primary receptacles. sions with colleagues Robert Hood and Louis Lopez at
Like selections, translations readntegers from the pri-  NASA Ames. The F-Nets model was developed during stud-

mary receptacle, but instead of using them as indices intd®S at Oregon Graduate Institute, where it began with the

the secondary receptacle, they are used as offsets for thoggsearch and helpful feedback of my advisor Robert Babb,

indices. This allows the secondary receptacle to be logi-2nd was furthered by feedback from my committee (Michael

cally shifted in any direction by any offset, being especially Wolfe, Harry Jordan, and Richard Kieburtz) and early dis-
useful with a selection representing a stencil. cussions with Dick Hamlet. The CDS package was devel-

oped at NASA Ames Research Center, where support was
provided by the NAS program and HPCC. The SC presenta-
tion benefited from discussions with Doreen Cheng at NAS.
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4.7. Data Parallelism

To provide data parallelism, a language needs not only

to support arrays, but also a way to scale the parallelisnReferences

with the size of the arrays. For this purpose, SC provides
the DupAll and DupAny constructs, which also execute asl.
phases.

The DupAll is only permitted for receptacles connected
to memories having a datatype of two integers, and is rep-
resented by prefixing the receptacle’s hame with an aster="
isk. When the receptacle becomes ready, SC reads the tw
integers from the memory and treats them as the bottom"
and top of a range. It then effectively “clones” the socket to
produce one socket for each number in the range, leaving
all of the wires and receptacles alone except for the DupAll4.
receptacle. For each clone, this receptacle’s type is changesl
to integer, the asterisk is removed from its nhame, and the
receptacle is wired to a separate new integer memory
which is created specifically for that clone by SC and ini-
tialized to a unique integer from the range. 6

Each of these new cloned sockets persists only long
enough to execute one module until it finishes. When they7
all finish, adone signal is posted to the original memory,
after which the DupAll may do it's job again. The DupAny
is exactly the same as the DupAll except that (1) a “+” pre-g.
fix is used instead of a “*", and (2) the module in only one
of the sockets will be allowed to execute beforedbee
signal is posted and the operation is reset. 9.

DupAll receptacles are often used as primary receptacles

for selections or translations, allowing a single socket to bel0-

replicated for each element (or dimension) of an array. It is
common to use a separate DupAll for each dimension.

5. Conclusion

Tolerant programming is possible. Given a satisfactory

12.

R. G. Babb and D. C. DiNucci, “Design and implementation
of parallel algorithms with Large-Grain Data Flow”, in The
Characteristics of Parallel Algorithms, Jamieson and Dou-
glass (ed.), Cambridge, MA, MIT Press, 1987, pp. 335-349.
K. M. Chandy and J. Misra, “Parallel Program Design: A
Foundation”, Reading, MA, Addision-Wesley, 1988.

D. C. DiNucci, “A simple and efficient process and communi-
cation abstraction for network operating systems”, LNCS vol.
1199 (CANPC’97 Proceedings), pp.31-45, Berlin, Springer-
Verlag, 1997, pp. 31-45.

D. C. DiNucci, “CDS” http:/lwww.nas.nasa.gov/Tools/CDS

D. C. DiNucci, “A formal model for architecture-independent
parallel software engineering”, Ph.D. Dissertation, Oregon
Graduate Institute, 1991, also availabldtgt/ftp.netcom.com/
pub/di/dinucci/thesis.ps.Z

D. C. DiNucci and R. G. Babb I, “Design and implementa-
tion of parallel programs with LGDF2”, COMPCON'89, San
Francisco, 1989, pp. 102-107.

D. C. DiNucci and R. G. Babb I, “Practical support for paral-
lel programming”, Proc. 21st HICSS Software Track, 1988,
IEEE, 109-118.

K. P. Eswaran et al, “The notions of consistency and predicate
locks in a database system”, CACM, vol. 19, 11 (November
1976), pp. 624-633.

R. Milner, “A calculus of communicating systems”, LNCS,
vol. 92, Berlin, Springer-Verlag, 1980.

J. Peterson, “Petri net theory and the modeling of systems”,
Englewood Cliffs, NJ, Prentice-Hall, 1981.

11. V. R. Pratt, “Modeling concurrency with partial orders”,

International Journal of Parallel Programming, vol. 15,
1(February 1986), pp. 33-71.

T. vonEicken, “U-Net: A user-level network interface for par-
allel and distributed computing”, ACM Symp. on Oper. Sys-
tem Princ., Copper Mountain, CO, Dec. 1995, pp. 303-316.



