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Abstract

In order to be truly portable, a program must be tolerant
of a wide range of development and execution environ-
ments, and a parallel program is just one which must be
tolerant of a very wide range. First, the term “tolerant pro-
gramming” is defined. Then, a formal model called F-Nets
is described in which parallel algorithms are expressed as
folded partial-orderings of operations, and this is argued
to provide a suitable framework for building tolerant pro-
grams. Finally, Software Cabling (SC), a very-high-level
graphical programming language, demonstrates how many
of the features normally expected from today’s computer
languages (e.g. data abstraction and data parallelism) can
be obtained within the F-Net paradigm.

1. Introduction

The subgoals of parallel processing are very similar to
the subgoals of software engineering in general—i.e. the
decomposition of a large problem into smaller tasks or
modules, the precise expression of the scope of data and
the semantics of sharing and communicating data effi-
ciently and safely between modules. In fact, differentiating
parallel software engineering from traditional software
engineering can be a mistake, since doing so may lead one
to believe that a parallel program is engineered in a differ-
ent (and perhaps even more roundabout) way than a “real”
program. Parallel software engineering will only come into
its own when parallel programs are considered “real”, and
the ability for a program to run efficiently on a parallel
machine is just another desirable feature which the soft-
ware possesses. A corollary is that tools, languages, and
methodologies for “parallel” programming must be useful
enough to facilitate any kind of programming.

This may seem like a lot to ask. After all, parallel soft-
ware engineering seems to lag behind sequential in virtu-
ally every area: formal models, languages, tools, and
development and debugging strategies. Of these, formal
models constitute the linchpin. With an adequate formal
model, the other methodologies can be developed to

exploit the properties of that model. To facilitate the needs
above, the model must be tolerant of, but not dependent
upon, the sharing of memory or the passing of messages.
Likewise, it must be adaptable to different languages, dif-
ferent architectures, different amounts of parallelism
(including none at all), and the possible presence of non-
determinism.

The objective of this paper is to present a tolerant
approach to software engineering. That is, rather than engi-
neering a product for a particular parallel environment, the
goal is to engineer one which is tolerant of many different
environments, including parallel environments. The paper
will first describe the full meaning of tolerant program-
ming, then will present a simple yet formal model for (par-
allel) computation, called F-Nets, which embodies that
meaning and thereby serves as the basis for other tools.
Then, a very-high-level graphical programming language,
called Software Cabling (SC), is presented as a case study
to demonstrate that the F-Net approach can be used to
approach real-world problems.

2. Tolerant Programming

Although the term “tolerant programming” could be
used to describe tolerance to any number of traits, those
covered here are concurrency, latency, semantics, changing
environment, bugs, and language. Tolerance of these traits
refers to the ability of a program or programming method-
ology to work well independently of the values of these
traits. Some techniques which might be used to obtain tol-
erance are described below, but tolerance may be achieved
through either user effort or automatically through tools
(e.g. compilers). In fact, tolerance often relies on the ability
to infuse the program with potentially useful information,
and this may not be possible without the aid of tools.

2.1. Concurrency

Concurrency tolerance refers to providing the opportu-
nity for scaling while not sacrificing efficiency on less-
scalable platforms. For example, a large program can be
decomposed into relatively small parts which may be able
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to execute concurrently, but there should also be a mecha-
nism to efficiently recompose these into larger portions
when parallel execution is not possible.

To express program decomposition, constructs which are
well defined and easily understood in both sequential and
parallel environments should be used. Traditionally, loops
have filled this role, but there are better examples, such as
functions and atomic transactions.

2.2. Latency

Latency tolerance refers to the ability to adapt to high-
latency environments without impacting efficiency in low-
latency environments. Such tolerance is gained primarily
by providing information about the expected data move-
ment patterns. For example, whenever possible, the pro-
grammer should:

1) Express need for data long before it is used (and
maybe even before process starts running—i.e. staging),

2) Express where newly created or modified data will be
used next, even before it is requested there,

3) Refrain from waiting for last version of data to be
consumed before creating next version (i.e. queueing),

4) Block (group) data to allow multiple data items to
move as a unit whenever it is requested or forwarded, thus
cutting latency/byte,

5) Pipeline computation.

2.3. Semantics

Semantic tolerance refers to the recognition that differ-
ent environments may have different default semantics, so
the desired semantics (or lack thereof) should be clearly
expressed. For example, shared memory and message pass-
ing are different standard semantic combinations for com-
munication, and using one combination globally
throughout the program can make the program much less
efficient in an environment which implements the other by
default. A better approach is to delineate the application’s
semantics for each data communication, so that the
required semantics can be implemented in the most effi-
cient way in the available environment—e.g.

1) Destructive read (i.e. read on non-empty, dequeue)
2) Destructive write (i.e. standard over-write)
3) Non-destructive write (i.e. enqueue), or
4) Non-destructive read (i.e. standard read)
In some cases, it is appropriate to express the lack of a

specific required semantics, especially as it relates to the
ordering of operations. For example, a designer may not
care about the order in which some commutative arithmetic
operations are performed, nor perhaps the order in which
some outputs are produced. Such an expression of accept-
able non-determinism may make a program run faster in

environments where loads or processor speeds vary. It is
important, however, to ensure that non-determinism does
not sneak into the design accidentally.

2.4. Changing Environment

Changing Environment tolerance refers to adaptation to
an environment which changes as the program is running.
Environment Tolerance includes the well-known Fault Tol-
erance, which is tolerance to processors which are made
unavailable in an abrupt and unannounced fashion, but it
also includes tolerance to any circumstances when proces-
sors leave in a pre-announced and well-defined way, and/or
when processors become available which were not previ-
ously present. This tolerance takes that the computer(s)
will likely be shared by many users, so the programming
and/or scheduling method should allow for efficient shar-
ing of limited resources.

2.5. Bugs

Bug tolerance relates to the provision of adequate
debugging tools and mechanisms which provide the ability
to find bugs and which limit the scope of bugs if they exist
so that a small bug in one part of the program will have
limited effects in other parts. This includes the ability to
find unwanted nondeterminism and to efficiently record
desired non-deterministic choices made during execution
of a parallel program so that it can be reliably debugged
and analyzed in a cyclic manner.

2.6. Language

Language tolerance describes the ability of a program-
ming methodology to retain its utility even when the spe-
cific programming language used for implementation
changes. This allows the implementor the flexibility to use
the appropriate language for the job, or to change the lan-
guage for any number of reasons, without requiring totally
different engineering methodologies.

3. F-Nets

This section will informally describe a model for paral-
lel computation called F-Nets. Although this model is not
widely known, it is similar in many ways to Petri Nets[10],
Turing Machines, Finite State Machines, dataflow, and
CCS[9], all of which are well known. It was originally
developed as a refinement of the Large-Grain Data Flow
(LGDF) parallel programming approach[1], and early ver-
sions went by the name LGDF2 [6]. A full, formal descrip-
tion is available[5], but the informal English description
which follows will be sufficient to illustrate the value of the



model.

The model will be described in six parts: its syntax, an
operational semantics, an axiomatic semantics, its relation-
ship to other models, its efficient expression on real com-
puters, and some practical and theoretical properties it
possesses which relate to tolerant programming.

3.1. Syntax

An F-Net can be considered as being similar to a Turing
Machine, having a (possibly-infinite) tape, separated into
squares. Each square contains a mutable value, called the
data state of the square, and a mutable color, called itscon-
trol state. Call the set of all possible data statesS.

Along with the tape, the F-Net consists of a possibly-
infinite set oftransitions. Associated with each transition is
a set of colored (non-white)heads. Each head is perma-
nently attached to one square—i.e. the tape does not move
relative to the heads. Each head is either aread  head, a
write  head, aread-write  head, or anodata  head
(i.e. a head having neither read nor write capability). The
heads for a given transition are enumerated from 1 ton,
wheren can be different for each transition. No two heads
from the same transition are attached to the same square. In
figure 1, the transitions are shown as circles, the heads as
lines, and the colors as shadings (green shown as black).
Arrowheads represent whether the head isread  (at the
transition end),write  (at the tape end),read-write
(at both ends), ornodata  (neither end).

Each transition has an associatedfiring function, which
can be visualized as a table. If the number ofread  and
read-write  heads on the transition isr, then the table
has entries, indexed by the possible combinations ofr
symbols under those heads. Each entry containsn colored
(or white) symbols—i.e. one symbol corresponding to each
head. Table 1 shows a sample firing function for transition
W in the previous example, assuming S = {e,x ,i ,t }.

Any read  or nodata  head can be declared “predict-
ablec” which is a declaration that the symbol correspond-
ing to the head in all of the firing function entries has the

color c. In the example, head 2 of W could be declared
“predictable green”.

3.2. Operational Semantics

An F-Net works as follows. The machine begins in an
initial state consisting of a predetermined symbol  and
the color green on each squareq. Then, repeatedly, aready
transition is located (subject to theliveness/fairness rule
below) andevaluated until there are no more ready transi-
tions. A ready transition is defined as one for which each
head is the same color as the square to which it is attached.
Evaluation (orfiring) consists of finding the entry in the
table corresponding to the symbols under theread  and
read-write  heads, and replacing the color of the
squares under all heads with the color of the corresponding
symbol from the table entry. For each write and read-write
head, the symbol (i.e. data state) of the square is also
changed to the corresponding symbol from the table entry.

The liveness/fairness rule states that if a transition is
ready, then either it or some other ready transition which
shares a square with it must be evaluated eventually (i.e.
will not be eternally preempted) in the repeat cycle
described above.

Note that forread  andnodata  heads, the symbols in
the table serve no purpose other than as place-holders for
the color at those positions, and that for predictable heads,
even the colors in the table are superfluous. Note also that
if any square becomes colored white during the course of
an F-Net execution, no transitions attached to that square
will ever be ready again, since heads cannot be white.

There is no need to consider the relative position of
squares on the tape, so F-Nets are often represented graph-
ically with the squares separated into disjoint rectangles.
Although the firing function is rarely represented graphi-
cally, the colors which might be assigned to each head are
often represented by colored dots near the connection
between the line (head) and the tape square (rectangle).
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Read andnodata  heads with only one colored dot are
implied to be predictable. In a black and white medium
such as this, colors are sometimes represented by adding a
“ / c ” suffix to the colored entity (i.e. dot, head, or within
the firing function), wherec  represents the color (e.g.g for
green,b for blue,r  for red). See figure 2 for a more stan-
dard representation of the F-Net from figure 1.

3.3. Axiomatic Semantics

Instead of describing an F-Net as an operational
machine-like entity, it can be described as a means of
parameterizing the set of computations which may be pro-
duced by the F-Net. The specification of the semantics then
becomes a description of this parameterization—i.e. a
characterization of the computations which can be pro-
duced by a given F-Net. Here, this characterization will
take the form of a set of axioms.

An F-Net computation takes the form of a directed
bipartite graph which is effectively a trace of the execution
which would result from executing the F-Net using the
operational semantics in the previous subsection and
recording each transition firing, and the color and data on
each tape square after each firing. It consists of state nodes
(represented by squares) and firing nodes (represented by
circles) connected by directed numbered edges (lines).
Each state node corresponds to a tape square in the F-Net,
and each firing node corresponds to a transition in the F-
Net. Each state node is labeled with a control state (i.e.
color) and a data state (from S). The axioms which con-
strain the computation follow:

Initial Conditions:  Each tape squareq in the F-Net will
be represented by at least one state node in the com-
putation graph from which any other state node for
tape squareq can be reached by following directed
arcs. This node will have a control state labeling of
green and a data state labeling ofσq

Atomicity:  Each state node in the computation graph
will have at most one incoming edge and at most one
outgoing edge.

Firing:  If transitiont in the F-Net hasn heads, then for
every firing node corresponding to transitiont:
(a) There will ben incoming edges, numbered 1 ton,

and n outgoing edges, numbered 1 ton, where
each edge numberedi will be attached to a state
node corresponding to the tape square under head
i of transitiont.

(b) The control state labeling of each state node
attached to an incoming edge numberedi will be
the same as the color of headi of transitiont.

(c) If head i of transition t is a nodata  or read
head, then the state nodes attached to edges num-
beredi will have the same data state labels. The
data states of the state nodes on all other edges
and the control states of the outgoing edges will
correspond to a single line in the firing function
table of transitiont, where the incoming edges
correspond to the “index” columns and the outgo-
ing edges corresponds to the “content” columns.

Liveness: If there is some transitiont and some set of
state nodes corresponding to the tape squares under
the its heads such that the control state labeling of
each state node corresponds to the color of the head
of transition t attached to that square, then at least
one of those state nodes must have an outgoing edge.

Time: The graph will be acyclic.
See figure 3 for an example of an execution graph for the

F-Net in figure 2. By removing the state nodes from the
execution graph (merging the two edges on each into a sin-
gle edge), the execution represents a partial ordering of
operations (where each operation is a transition firing func-
tion), or identically, a single function which is the composi-
tion of each of the involved firing functions.

3.4. Relationship to Other Models

The description of the F-Net model above was based
loosely on the Turing Machine. In fact, it is more properly
interpreted as a TM coordination model—i.e. each transi-
tion can be considered a TM, and each F-Net square can be
considered as a TM tape being passed from one TM to
another. The next subsection will go into more detail on
how this interpretation influences implementation on tradi-
tional computers.

A kinship between F-Nets and Petri Nets is suggested by
the similar appearance (though the notations are confused).
Specifically, an F-Net with onlynodata  heads (and there-
fore only predictable heads, since each firing function can

Figure 2. Same Sample F-Net in Standard Form
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contain only a single table entry) can always be expressed
as a Petri Net by mapping each F-Net transition to a Petri-
Net transition and each F-Net square top Petri-Net places,
wherep is the number of colors which the square might
assume. Each head in the F-Net becomes two arcs in the
Petri Net: an input arc from the place representing the color
of the head, and an output arc to the place representing the
predictable color which the head assigns to the square. The
initial marking of the Petri Net is with one token on each
“green” place. The ability to represent more complex F-
Nets as Petri Nets depends upon the ability to represent
each of the firing functions, which may not be useful, nor
even be possible in the general case where some of the fir-
ing functions are partial recursive and/or S is infinite.

The presence of data in the F-Net model also makes it
similar to dataflow or functional models. However, unlike
these models which utilize simple arcs that are usually rep-
resented with single- (or zero-) assignment variables within
languages, the squares in an F-Net represent updatable
containers more like traditional imperative variables. Also,
F-Nets more naturally accommodate non-determinism.

Each square in an F-Net can be considered as a finite
state machine (with the state represented by the color)
which also carries data, and these are interconnected with
(partial) functions or Turing Machines. This suggests simi-
larities and differences between F-Nets and Milner’s CCS.
Both can be considered as composing finite state machines,
and upon atomic events which occur only when the states
of different machines occur in pre-determined combina-
tions. In both, these events in turn cause or allow each of
the involved machines to perform a transition. However, in
CCS, data transformation events are coupled with the
machine transitions, whereas in F-Nets, they are coupled
with the atomic events between the machines. It seems
plausible that CCS theory could carry over to F-Nets.

By restricting F-Nets to use only green control states, a
model similar to Unity[2] emerges. Guards in the latter are
effectively replaced by control states in the former.

3.5. Real-World Implementation

To understand how the F-Nets model pertains to tolerant
programming, it is first important to understand how its
components manifest themselves in the real world. Only
two such components will be discussed here: the firing
functions and the tape squares. The remainder of the F-Net
is typically represented in the same graphical form previ-
ously described.

In a standard computer, the firing function of each tran-
sition of an F-Net is normally implemented as a small
deterministic (usually sequential) subprogram. That is,
instead of being a table, the function is represented by the
mapping of inputs to outputs implied by the code. The data

state of each square is implemented as a standard data
structure. This leaves only the colors (i.e. control state) to
be handled in a somewhat non-standard manner.

When a transition fires, the data state of the squares
under the transition’s heads are passed to the subprogram
as arguments. Althoughnodata  heads can be neither read
nor written, they are also supplied as a special kind of argu-
ment. At any time during the execution, the subprogram
can execute a special statement, of roughly the form

give square color
which declares that the subprogram will make no further
accesses to argumentsquare , and that the square should
be assigned the new colorcolor . By executing one such
statement for each of its arguments (i.e. squares), the sub-
program expresses a mapping from the initial state of its
read and read-write squares to the final state of itsread
andread-write  squares and the new color for all of its
squares, as it is required to do by the formal F-Net seman-
tics. If a transition subprogram does not execute agive
statement for some of its arguments, those squares effec-
tively become white.

The word “repeatedly” in the semantics (third sentence)
suggests that only one transition can be evaluating at a
time, but this leads to both practical and theoretical prob-
lems. Practically, requiring sequential execution obviously
decreases the model’s value in the realm of parallel pro-
cessing. Theoretically, sequential execution would require
that a scheduler know when the evaluation of a transition
subprogram was finished so that it could know that the next
ready transition could be initiated. This means that, at
every point in time, the scheduler would be required to
decide whether further evaluation of the subprogram might
lead to execution of moregive  statements (i.e. for argu-
ments for which they had not already been executed). In
other words, a correct sequential scheduler would be
required to either solve the (impossible to solve) halting
problem, or to conceivably let subprograms which never
executegive  statements for some arguments execute for-
ever and thus contradict the required liveness properties.

Fortunately, the operational semantics in subsection B
can be shown to be identical to these revised semantics:

“An F-Net works as follows. The machine begins
in an initial state ... . Then, repeatedly, a ready
transition is located andinitiated. A ready transi-
tion is .... . Initiation means changing the color of
all the squares under the transition’s heads to
white, and then beginning evaluation of the transi-
tion. Evaluation ...”

In this case, the scheduler does not need to wait for one
transition to finish its evaluation before initiating the next.
A database theorem about two-phase transactions[8] guar-
antees that the transactions here will still act atomically by
virtue of first acquiring all of their resources (i.e. changing



all of its squares to white, effectively locking them), and
then relinquishing them (i.e. giving them a color).
Although the theorem does not rule out deadlock, the
semantics here do so by ensuring that only one transition is
initiated at any one time. It could also be ensured by
enclosing initiation in a critical section covered by a lock,
or by changing the color of the tape squares to white in a
predetermined global order.

Predictable heads provide ample opportunity for optimi-
zation. Since onlyread  andnodata  heads are predict-
able (by definition), the new data state and control state for
the associated square is known the instant the transition
fires. This means that the scheduler itself can pre-give  the
square a color during scheduling and thereby immediately
schedule other transitions which become ready as a result.

The control state (color) of each square is implemented
as internal state which allows a scheduler to determine
which transitions to schedule. It is often most efficient to
distribute this control state among the transitions. That is,
rather than representing the control state of each square in
a particular location, each transition is given areasons
count—i.e. an integer which describes the number of the
transition’s heads which are over the wrong color of
square. Each time a transition is initiated or executes a
give  statement, the appropriate reasons counts are
adjusted (within a critical section), and new transitions are
scheduled (i.e. initiated) whenever their reasons counts
reach zero[7].

In distributed memory environments,give  statements
associated withwrite  or read-write  heads often map
straightforwardly into messagesend s which pass the data
state associated with the square to the next process that will
read it. There are, however, some circumstances where the
next process to read the data cannot be immediately
known. In that case, the data state can either be left with the
transition to be requested later when the reader is finally
determined by the scheduler, or it can be forwarded to a
location which is physically closer to all potential readers.

A simple subroutine package, called Cooperative Data
Sharing (CDS), embodies the communication requirements
of F-Nets without the dataflow-like execution seman-
tics[4]. In addition to serving as a basis for the implementa-
tion of F-Nets, it also serves as a standard communication
substrate for a variety of other purposes, similar to PVM or
MPI except that it avoids all copying in low-latency shared
environments.

3.6. Tolerance and Other Properties of F-Nets

The visual nature of F-Nets springs from the nature of
computation and the relationship between algorithms and
computations. In the sequential world, a computation is
usually defined as a sequence of operations. One possible

algorithm to express a particular sequential computation is
a “straight-line” algorithm which performs each of the
operations in the proper order, but the power of program-
ming is obtained by “folding up” and compacting this
straight-line algorithm with loops and conditionals. During
execution, such a “folded up” algorithm both performs the
operations designated therein and unfolds into a sequence
at the same time, and the unfolding itself can be affected by
the inputs provided to the algorithm.

Similarly, a parallel computation is often considered as a
partial ordering of operations [11]. However, the term “par-
allel algorithm” has heretofore not had a very formal defi-
nition. An F-Net algorithm is an almost perfect analog to a
sequential algorithm—i.e. it is a folded up partial ordering
of operations, which is unfolded as it is executed. This
“folded partial ordering” description explains why F-Nets
are represented most naturally as graphs.

Unlike sequential algorithms, some F-Net algorithms
may unfold into different partial orderings, even when
given the same inputs (or in this case, initial markings).
This nondeterminism is a desirable characteristic, as
described earlier under semantic tolerance, as long as it is
not introduced by accident. Potential non-determinism in
an F-Net can be detected syntactically, so tools can allow
the user to verify that it is desired. Specifically, an F-Net
may be non-deterministic if and only if it contains two (or
more) transitions which have like-color heads on the same
square (says1) and those same transitions do not have dif-
fering-color heads on another “shared” square (says2).
The non-deterministic choices made during execution can
be recorded efficiently by just recording the order in which
the stated transitions fire—i.e. one bit recorded for each
execution of the offending transitions—and this informa-
tion can be used during debugging to ensure repeatability.

Language tolerance is achieved in F-Nets because the
model requires only that each firing function represent a
deterministic mapping from some set of data values to
some new set of data values and to a color for each head.
The representation of this mapping is not restricted: e.g. it
can be in the form of an imperative subroutine, as
described, or in terms of a functional, dataflow, or logic
program fragment (though these paradigms may be unable
to take advantage of F-Nets’ update-in-place capabilities to
gain maximum efficiency). This provides maximum flexi-
bility to use any language, and even to use different lan-
guages for different transitions.

The fact that each transition represents a simple map-
ping, independent of anything else going on at the time, is
indicated by the (first) semantics. That is, even though tran-
sitions may execute concurrently, they must act as though
they are executing one by one. This not only provides con-
currency tolerance, since the constructs being used have
identical behavior in parallel and sequential environments,



but also bug tolerance, since errors in implementing a tran-
sition can only lead to errors in the mapping represented by
that transition. Moreover, since the semantics of the lan-
guage used to implement the transitions does not signifi-
cantly change in a parallel environment, standard
sequential debugging tools can be used to debug the transi-
tion mappings. This is in marked contrast to traditional
shared-memory or message-passing programming, where
the behavior of any one program or program fragment can
only be described by including the possible asynchronous
arrival of messages and/or data, and therefore by including
all possible global states of the system.

F-Nets achieve latency tolerance through all of the tech-
niques mentioned in the previous section. Since each tran-
sition is endowed with the knowledge of the data that it
will need to perform its task, this data can be forwarded
(staged) by the scheduler in a dataflow fashion to the pro-
cessor which will execute the firing function, even before
the function executes. Latency is amortized by communi-
cating an entire tape square (which could comprise a large
data structure) at a time, leaving fine-grain access to its
components to occur in a low-latency environment.

Queuing of multiple versions of a tape square is also
supported by the model, due to predictable heads. Suppose
that one transition has a green “predictable red”read
head on a tape square, and another has a redwrite  head
on the same square which changes the color to green.
When the first transition fires, the scheduler can immedi-
ately change the square color to red, allowing the writing
transition to execute again even while the reader continues
to execute. Of course, in this case, the scheduler must
ensure that the writer uses a separate memory area to create
the “next” version of the data state for the tape square.

Transitions are very tolerant to both concurrency and
dynamic environment considerations due to their atomic,
stateless properties. Specifically, by ensuring that each
transition is relatively small, an algorithm can expand into
any number of available processors, and problems related
to the loss or migration of execution state can be avoided
by backing out of partially-executed transitions. Neverthe-
less, unlike some functional and dataflow models where
data must be copied from one actor (function, program,
chare, etc.) to the next, executing multiple sequentially-
composed transitions on the same processor adds virtually
no overhead above a standard subroutine-call interface.

4. Software Cabling

Software Cabling (SC) is a visual programming lan-
guage for building very large F-Nets. An SC program
effectively compiles into an F-Net while ensuring that the
correspondence between the SC program and the F-Net is
always apparent. This allows SC to inherit many of the

desirable properties of the F-Nets model while compensat-
ing for some of F-Net’s apparent practical deficiencies.

The terminology which is used to describe SC is based
upon a hardware analogy. In the first subsection, terminol-
ogy and representation of the basic constructs will be
described. Subsequent subsections will describe modular-
ization, first-class modules, objects, templates, arrays, and
data parallelism.

4.1. Basics

An SC program is constructed ofmodules. Each module
has abody, which tells it how to act, and aninterface,
through which it interacts with its environment. The inter-
face consists of one or morepins, each with a name, a per-
mission (read , write , read-write , or nodata ), a
data type, and a list of identifiers called asignal set. There
are two kinds of modules:chips andboards.

A chip can be considered as a custom CPU chip, and is
the only construct in SC which transforms data. As with an
F-Net transition, its body is constructed with tools outside
the realm of SC, but SC depends upon each chip acting in a
specific deterministic way when initiated: The chip must
initialize all of its internal data, then read one data item
from each of its read or read-write pins, then compute for
some amount of time and write one data item to each of its
write and read-write pins. In addition, for each of its pins, it
must post a signal from the signal set of that pin. (If a sig-
nal is not posted for a pin, a special “bottom” signal is
imagined to be posted.)

A board can be considered as a flat surface upon which
other components are mounted. The body of a board is
specified in a schematic-like diagram. The primary role of
a board is to specify how other modules which are mounted
upon it will interact.

The two basic components which are permanently
mounted upon boards are calledsockets andmemories, and
these are connected bywires.

A socket is represented in the board diagram as a circle,
and is designed to hold a module—i.e. either a chip or a
board. To this end, a socket consists of a set of receptacles,
each capable of accepting one pin of the module interface.
Each receptacle has a name, a permission, a data type, and
a signal set—just like a pin—and will only accept a pin of
the same name, signal set, and (for simplicity) datatype.
The receptacle’s permissions can typically be more general
than that of the pin, as shown in table 2. The socket circle is
labeled with the name of the module inserted into it.

Receptacle permissions Accepts pin with permissions
read-write read-write,read,write,nodata

read read, nodata
write write

nodata nodata

Table 2: Kinds of pins accepted in a receptacle



A memory is represented in the board diagram as a rect-
angle, and is designed to hold one data item and one color,
both of which may change during execution. The type of
data item which a memory may hold is described by a data
type associated with the memory. The initial data state of
the memory is initialized to standard default values, which
can be over-ridden by annotating the memory rectangle
with “=const ” whereconst  is a constant—i.e. a literal
numeric, character, or record constant in a standard form,
or of the form “<name>” in which case the constant asso-
ciated with identifier “name” is found in a repository asso-
ciated with the program (called theprogram data base).

Wires are represented in the board diagram as colored
lines, and they connect each of the receptacles of a socket
to a (different) memory. Each line is labeled with the name
of the receptacle which it connects, and has arrowheads to
represent the permissions of that receptacle: on the socket
end forread , the memory end forwrite , both ends for
read-write , and neither end fornodata . The signal
set of the receptacle is represented just inside of the mem-
ory rectangle, where the wire connects to it, and each of the
identifiers in the signal set is colored.

If chips are placed into all of the sockets on a board, the
semantics are almost exactly those of the F-Net with the
same appearance. The memories act as tape squares, the
wires as heads, the sockets as transitions, and the chips as
firing functions. The only difference is that a chip now
posts a signal to each pin instead of providing a color, and
the new color of the memory is determined by the color of
that signal name in the signal set within the memory. (Bot-
tom signals always result in colorless memories.) This
effectively parameterizes the colors, resulting in the ability
to use a single chip in more varied circumstances than a
similar firing function

Table 2 was designed specifically to guarantee that SC
programs appear as F-Nets, which is the reason that a
write  receptacle cannot accept anodata  pin. If other-
wise, it would be possible to run an experiment that did not
match that of an F-Net—specifically, initializing all of the
memories for a socket, letting the chip therein execute,
then re-initializing the memories to the same values again
but changing the value for one attached to awrite  recep-
tacle, and letting the chip execute again. The memory on
the write  receptacle should end up with the same value
both times, but wouldn’t if anodata  pin was inserted into
the receptacle.

4.2. Modularization

So far, there has been no mention of how a board’s inter-
face is connected to its body. This is accomplished through
special memories calledi-memories (interface memories).
Specifically, for each pin in the board’s interface, there is

one i-memory in the board, labeled with the name of the
pin. The signals from the pin are listed in a small box,
called aposting table, which adjoins the i-memory rectan-
gle. Each signal name in the posting table has a different
color, and none of them are green.

To describe the result of inserting a board into a socket,
it will help to first define some terminology. If board A is
inserted into a socket on board B, board A is called thepri-
mary board, and board B thesecondary board. Since each
i-memory on board A corresponds to a pin of board A, and
each pin of board A also corresponds to a receptacle on
board B which is connected by a wire to a memory on
board B, there is a correspondence between each i-memory
on board A and a wire and a memory on board B. These
wires and memories on board B are called the respective
targets for the i-memories on board A.

The semantics are as follows: In all cases, an i-memory
effectively shares the data state of its target memory. The
control state (i.e. color) of each i-memory is initialized to
be colorless, but whenever the target memory of an i-mem-
ory matches the color of the target wire, the i-memory
itself becomes green. If a module on the primary board
(with a green wire) accesses that i-memory, it not only
steals the color from the i-memory, but also from the sec-
ondary memory. When (if) that module posts a signal to
give the i-memory a new color, SC compares the new color
with the colors of the signals in the posting table. If there is
no matching signal color, the i-memory retains the new
color (as usual), and other modules on the board which are
attached to the i-memory with wires of that color may fire
as usual, but the target memory remains colorless. How-
ever, if a signal color matches, the i-memory becomes col-
orless once again, and the matching signal is effectively
posted through the target wire to the target memory.

4.3. First-Class Modules

The modules (i.e. chips and boards) defined previously
are not actually immutable objects. Instead, they are
descriptors of immutable objects. That is, the user provides
a description of the module to create, and the socket actu-
ally creates it. These descriptors are constants, stored in the
program data base along with any other constants the user
wants to store there. In the cases described above, this sub-
tle difference was not important because each socket was
always given the same descriptor, and each board which
was created remained intact for the remainder of the pro-
gram. This subsection describes other cases, where mod-
ules are treated as first-class objects.

Each socket has a special receptacle called(module)
from which it reads the descriptor for the module that it is
to create. The labeled-circle representation used in the pre-
vious section is actually a shorthand for this: see figure 4.



When the wire for the(module)  receptacle is the same
color as the memory to which it is attached (which it will
always be in the default case above since thedone  signal
and the wire are green), the socket reads that descriptor. If
the descriptor is that of a chip, the socket builds the chip
and waits for it to become ready, then initiates it. If the
descriptor is that of a board, the socket associates the i-
memories on the board with their target memories on the
secondary board as discussed in the last section and creates
and initializes all of the other memories on the board
(unless they have been previously created, as will be
described in the next section). This may, in turn, allow
other sockets to construct their modules—i.e. if a newly-
created memory (or a newly associated green i-memory)
on the board is attached with a green wire to a(module)
receptacle for a socket on the board.

The (module)  receptacle does not act exactly like
other receptacles. Even when the socket reads the descrip-
tor on its module receptacle, it does not actually drain the
color from the associated memory until and unless the
resulting module actually has some outward effect on other
memories—i.e. drains the color through one of the other
receptacles of the socket. If another socket changes the
color of the memory containing the module before the
socket has its effect, the socket must back out and effec-
tively pretend that it never tried to execute. Note also that
the (module)  receptacle is predictable by default, and a
socket will never re-start until the module therein finishes.

By default, boards never finish, but a board is permitted
to have an i-memory named(module) , and if so, this i-
memory naturally corresponds to a(module)  pin on the
board. Changing its color to match a signal in its posting
table will have the natural effect of causing the socket con-
taining the board module to post that signal to its(mod-
ule)  receptacle. It will also have one other side-effect:
From that point on, no i-memory for the board will ever be
green again. In other words, if some of the i-memories on
the board are a non-green color at that time, they will con-
tinue to possess that color, and if modules on the board
have stolen color from some i-memories on the board, they
are free to post signals and return the color to those i-mem-
ories, but if an i-memory is (or becomes) colorless because
its target memory is the wrong color, then the i-memory
will remain colorless from that point on. Once the color on
all of the i-memories of the primary board are effectively
stolen back by the secondary board, the primary board will
have no further effect on its environment, even if other

modules on the board are able to execute, so the board can
be “garbage collected” by the runtime system.

A board can be (and is) considered to have logically fin-
ished as soon as it has posted a signal to its(module)
pin, since this allows the board to finish up what it started,
but does not allow it to start more work. In atomic transac-
tion terminology, these semantics ensure that the board is
entering a shrinking phase. If the programmer ensures that
the board does not enter a second growing phase (i.e. does
not steal color a second time) before posting this signal, the
board execution can be assured to be an atomic transaction.

A special chip calledcopy , provided by SC, increases
the power of this feature, along with being useful in other
contexts. Thecopy  chip has two pins: aread  pin called
in , and awrite  pin calledout . Its operation is obvious:
it reads a data item from itsin  pin and writes the data item
to its out  pin. It is better than a user-written copy chip, in
that it can copy any kind of data object, including module
descriptors, and it can do so very efficiently (perhaps with-
out even performing an extra copy) because the SC sched-
uler knows the desired result and can therefore optimize.

4.4. Objects

A board descriptor can be considered as an abstract data
type, with each socket containing that board being an
instance of that type, since a board has fixed interfaces,
methods (i.e. modules within attached to i-memories with
green wires) which can be invoked by outside actions, and
hidden data (i.e. memories) to which they control access.
But funneling all accesses for one instance through one
socket is extremely cumbersome. What is needed is for a
single object to be usable at different places within a net-
work in a concurrent fashion. The first-class modules
described in the last section set the stage for this. This sec-
tion finishes the job.

Each non-interface memory on each board has an immu-
table instantiation level, which is 0 by default but can be
specified as some positive integer by the programmer,
shown graphically as a number of lines parallel to one or
more sides of the memory rectangle. The board itself also
has an instantiation level, which is initially set to the maxi-
mum instantiation level of any memory on the board.

These instantiation levels are used by a special chip, pro-
vided by SC, calledinstant , which has a singleread-
write  pin calledobject  and a datatype of “module”
(i.e. a module descriptor). When an instant chip fires, it
reads the board module from itsobject  pin and finds all
of the memories on the board with the same instantiation
level as the board. It theninstantiates these memories, dec-
rements the instantiation level on the board descriptor, and
writes the new board descriptor back out to its pin.

To relieve any confusion between instantiated boards

(module)

=<x>

x is shorthand for

Figure 4. Labeled circle shorthand
done



and non-instantiated board descriptors resulting from the
above paragraph, consider that the control and data states
for all memories are kept in a special globally-accessible
data area called the memory heap. Instantiation then just
corresponds to creation of a memory in the memory heap
and saving the address of this new memory with the mem-
ory rectangle as part of the new (constant) board descriptor.

The constructs described here can be used to facilitate
object-oriented programming. First, the programmer
assigns an instantiation level of 1 to “instance variable”
memories, resulting in a board descriptor with an instantia-
tion level of 1 which serves as a class. To create an object
of that class, the user copies the class to another memory
(usingcopy ) and instantiates it (usinginstant ), which
creates the instance variables and upgrades the class
descriptor to an object descriptor. Any socket which reads
this object descriptor will share the control and data state
for the instance variable memories. Instantiation levels of 2
and greater can be used to repeat this approach in a hierar-
chical fashion (e.g. for class and superclass variables).

4.5. Patterns and Templates

Programming-in-the-large requires the construction of
templates or skeletons which describe the interactions of
individual modules or objects without over-constraining
the form of those modules. The constructs in this subsec-
tion help to address some of those requirements.

I-memories, wires, pins, and receptacles are all simple
atomic constructs. These are actually the degenerate forms
of record-like constructs, calledi-sets, cables, pin-sets, and
receptacle-sets, respectively, which can fill the same roles.
So, an i-set is recursively defined as a set of i-sets or a sin-
gle i-memory; a cable as a set of cables or a single wire; a
pin-set as a set of pin-sets or a single pin; and a receptacle-
set as a set of receptacle-sets or a single receptacle. The
power of these constructs is that the programmer does not
need to fully specify their form: unspecified portions of the
hierarchy are inferred (dynamically) from the current exe-
cution context.

An i-set is shown graphically as a labeled rectangular
region, as in figure 5. If it is not otherwise apparent, the
region can be distinguished from a memory rectangle by
being drawn with a dashed line. It encompasses any i-sets
(including i-memories) which it contains. An asterisk
within an i-set represents zero or more additional unspeci-
fied i-sets. An empty i-set rectangle is a special case which
represents either an i-memory or an i-set containing any
number of component i-sets. An imaginary i-set, called
(iface) , encompasses all other i-sets and i-memories.

Just as there is a one-to-one correspondence between i-
memories on a board and pins in the board’s interface,
there is the same correspondence between the i-sets on the

board and pin-sets in the board’s interface. And, just as
pins on a board fit into receptacles of a socket, pin-sets
from a board fit into receptacle-sets of a socket. It is at this
stage where all unspecified structures become known to
SC. That is, when a board interface is inserted into a
socket, that interface is made to conform to the socket,
defining any unspecified portions of any pin-sets in the
interface which in turn defines any unspecified portions of
any i-sets on the board.

Cables, which are shown as lines (again, dashed if nec-
essary to distinguish them from wires), connect the recep-
tacle-sets of a socket to other entities, and thereby the
receptacles within those sets to memories. The simplest
such binding is shown by drawing a cable between the
socket and an i-set, in which case the form of the cable
(and therefore the receptacle-set with the same name in the
socket) is inferred to have the same structure as the i-set.
Each wire of the cable (i.e. receptacle of the socket) is
attached to the i-memory of the i-set with the same name,
and with a signal set identical (in color and name) to the
posting set of the i-memory.

Figure 6 shows that cables can also be built up from
individual cables (including wires) using thebundling con-
struct, shown as a triangle. The cable being built is attached
to the apex of the triangle, and the component cables are
attached to its base. This construct is unidirectional—the
cable from the apex must always connect to a socket or the
base of another bundling.

With these record-like constructs, SC programmers can
build a “template” board, which reads objects or modules
from some of its pins and specifies how they should inter-
act to a limited degree, even if the entire interface of those
modules is not known. Likewise, a module can access part
of its interface without necessarily knowing the form of the
entire receptacle-set into which it is inserted. For example,
a socket could pass a hierarchical file system to a module
by representing each directory or folder as a receptacle set
and each file as an receptacle, and a module inserted into
the socket needs only to identify the specific items which it
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knows about within the corresponding i-set.

4.6. Arrays

Memories within SC, like tape squares within F-Nets,
can only be accessed by a single chip at a time. This is
especially troublesome for arrays, since storing the entire
array in a single memory would greatly restrict parallelism,
but storing each element in a separate memory can be com-
pletely impractical. Neither approach lends itself well to
arrays which change their size dynamically during program
execution, making data parallelism difficult or impossible
to express. Dynamic memory allocation is also desirable.

To address these problems, each memory in SC has an
associateddimensionality, expressed numerically as a non-
negative integer and graphically as a number of hash marks
in the left side of the memory rectangle. Dimensionality is
basically a number of dimensions, and memories with
dimensionality of zero, like all the memories discussed so
far, are sometimes calledscalars, while those with other
dimensionality are calledarrays. Each array consists of an
infinite number of elements, and all elements have the
same type and same initial data state, but each element
maintains its own control state and data state during execu-
tion. Each element is uniquely addressed by an index
which consists ofn integers, wheren is the dimensionality
of the array. Since i-memories can be arrays, so necessarily
can pins, receptacles, and wires. An array pin conforms to
the size and shape of its array receptacle at insertion.

To understand how memory array elements are accessed
requires further explanation of sockets. In a previous sec-
tion, sockets were described as waiting until their(mod-
ule)  receptacle was ready, then snooping on the memory
attached to that receptacle to determine the module to exe-
cute. In fact, sockets can have manyphases (i.e. levels of
snooping), of which reading the(module)  receptacle and
building and executing the module is the last. Each other
phase waits on and reads one or moreprimary receptacles
and uses the information there to establish the size in each
dimension of one or moresecondary receptacles, and to
bind (i.e. connect) wires from the secondary receptacle ele-
ments to memory array elements. A secondary receptacle
from one phase can be used as the primary receptacle of a
subsequent phase. Just as before, if any memory attached
to a primary receptacle is accessed by another module
before the socket finishes all of its phases and the new
module therein has some outward effect, then all phases
effectively start all over again from scratch. This rule
ensures that the socket binding and execution of the mod-
ule therein appear as an atomic action.

There are two basic kinds ofbinding modifiers, called
selection and translation. These are shown as an arrow
within the module circle, from a wire representing the pri-

mary receptacle (to be snooped) to a wire representing the
secondary receptacle (to be accessed using the snooped
data). Each arrow is labeled with anindex list (i.e. a list of
small integers), which are prefixed with a “+” if indicating
a translation.

A selection is very similar to normal subscripting. When
the primary receptacle becomes ready,n integers are read
from it, wheren is the length of the index list on the arrow,
and they are used, in order, as indices into the primary
receptacle, as specified by the index list. Put another way,
each integer effectively collapses the primary receptacle in
one dimension, specified in the index list. Multiple selec-
tions can be specified for the same secondary receptacle as
long as their index lists do not contain the same values.
Specifying all of the indices for the secondary receptacle,
as in figure 7, collapses it to a single element, like normal
subscripting. Leaving some indices unspecified results in a
secondary receptacle of reduced, but non-zero, dimension-
ality. This is not acceptable if the module inserted into the
socket in the final phase is a chip, since a chip can access
only a finite number of elements, but is acceptable if the
module is a board, since further selections can be per-
formed on the associated i-memory within the board.

Any number of indices in the index list for a selection
can be enclosed in parentheses, in which case two integers
(rather than one) are read from the primary receptacle for
that index. Those integers are used as the bottom and top of
an index range. Note that such ranges do not reduce the
dimensionality of the secondary receptacle, but simply
limit the number of elements in the specified dimensions.
These range selections are so useful that SC provides a
shorthand for their use, as in figure 8: By attaching one end
of a wire to the corner of a scalar memory having a
datatype of two integers, and the other end to one of the
dimensionality hash marks of a memory rectangle, a range
selection will be performed for the index corresponding to
the hash mark for all subsequent accesses to the array
memory. If the array is an i-memory, a similar notation
(with reversed arrow) initializes the range memory with the
size of the socket receptacle in that dimension.

The above description of selections refers to the special
case when the primary receptacle is scalar. In the general
case, a selection is performed as above using each element
of the (finite) primary receptacle, and the results are orga-
nized into an array shaped just like the primary receptacle.
The dimensionality of the result is therefore effectively
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Figure 7. Selection bindings: scalar from 3 dim.
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Result: c is scalar receptacle,
bound to element 7,18,14
of 3-dimensional array



increased by the dimensionality of the primary receptacle,
just as it is decreased by the length of the index list. Ranges
are not allowed with non-scalar primary receptacles.

Like selections, translations readn integers from the pri-
mary receptacle, but instead of using them as indices into
the secondary receptacle, they are used as offsets for those
indices. This allows the secondary receptacle to be logi-
cally shifted in any direction by any offset, being especially
useful with a selection representing a stencil.

4.7. Data Parallelism

To provide data parallelism, a language needs not only
to support arrays, but also a way to scale the parallelism
with the size of the arrays. For this purpose, SC provides
the DupAll and DupAny constructs, which also execute as
phases.

The DupAll is only permitted for receptacles connected
to memories having a datatype of two integers, and is rep-
resented by prefixing the receptacle’s name with an aster-
isk. When the receptacle becomes ready, SC reads the two
integers from the memory and treats them as the bottom
and top of a range. It then effectively “clones” the socket to
produce one socket for each number in the range, leaving
all of the wires and receptacles alone except for the DupAll
receptacle. For each clone, this receptacle’s type is changed
to integer, the asterisk is removed from its name, and the
receptacle is wired to a separate new integer memory
which is created specifically for that clone by SC and ini-
tialized to a unique integer from the range.

Each of these new cloned sockets persists only long
enough to execute one module until it finishes. When they
all finish, adone  signal is posted to the original memory,
after which the DupAll may do it’s job again. The DupAny
is exactly the same as the DupAll except that (1) a “+” pre-
fix is used instead of a “*”, and (2) the module in only one
of the sockets will be allowed to execute before thedone
signal is posted and the operation is reset.

DupAll receptacles are often used as primary receptacles
for selections or translations, allowing a single socket to be
replicated for each element (or dimension) of an array. It is
common to use a separate DupAll for each dimension.

5. Conclusion

Tolerant programming is possible. Given a satisfactory

theoretical model as a basis, many of the difficulties related
to parallel programming can be surmounted. F-Nets pro-
vides a formal and natural expression for parallel (and
sequential) algorithms, and can serve as a basis for con-
structing tolerant programs in languages like SC.
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